模型管理引擎有哪些

星环大模型运营平台
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

模型管理引擎有哪些 更多内容

星环大数据基础平台-TranswarpDataHubTranswarpDataHub(TDH)是星环科技自主研发的企业级一站式多模型数据管理平台。凭借星环科技创新的技术架构和深厚的产品研发能力架构,轻松胜任高阶数据分析:TDH采用领先的多模型技术架构,用于构建服务于整个企业的统一数据资源库,彻底打破不同部门间的数据隔阂,支持数据跨部门灵活调用,创造更大的数据价值。统一数据管理,保障数据一致,告别数据冗余:使用TDH可以轻松实现GB~PB级多源异构数据的高效存储和统一管理,TDH拥有自主研发的分布式数据管理系统TDDMS,统一管理多个数据模型,避免数据跨库导入导出,减少数据冗余,保障多个模型使用数据的高度一致。支持10种存储引擎、11种存储模型,自动化应对多部门业务需求:TDH通过10种独立的存储引擎,支持业界主流的11种存储模型。这10种存储引擎是:关系型分析引擎、宽表存储引擎,TDH帮助企业加速数字化转型,更全面、更便捷、更智能、更安全地运用数据,大幅降低综合成本。基于星环大数据基础平台构建核心商业系统,是企业实现一站式数字化转型、加速业务创新的致胜关键。核心优势创新多模型技术
金融大模型在金融领域的应用具有重要的意义和价值,可以提供准确的金融分析和预测,为金融决策和风险管理提供有力支持。金融大模型哪些?星环无涯金融大模型-Infinityhttps智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度模型。主要通过自监督的增量训练和监督的指令微调,使用星环科技高性能计算集群训练而成。星环科技无涯使用上百万的高质量的专业金融语料,涵盖了研报、公告、政策、新闻等高质量的自然语言文本,作为基础大模型的的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大语言二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的指令微调,从而
模型推理模型哪些近年来,人工智能领域取得了突飞猛进的发展,其中大语言模型(LLM)的崛起尤为引人注目。这些模型能够理解和生成人类语言,在问答、写作、编程等多个领域展现出惊人的能力。那么,这些大模型在推理时究竟采用了哪些方法呢?本文将介绍几种常见的推理模型。首先需要明确的是,大模型的推理过程可以分为两个层面:一是模型自身的推理能力,二是人们为提高模型推理效果而设计的外部方法。模型自身的推理能力复杂问题时的思考方式。这种方法特别适合需要多角度思考的开放性问题。此外,还有一些方法尝试将外部工具整合到推理过程中。例如,让模型在需要时调用计算器进行精确计算,或使用搜索引擎获取最新信息。这种"工具主要依赖于其训练数据和架构设计,而外部方法则通过各种技术手段来激发和增强这种能力。在模型自身层面,现代大语言模型普遍采用transformer架构。这种架构通过自注意力机制,能够捕捉输入文本中的长距离依赖关系,从而建立起复杂的语言理解能力。模型在预训练阶段通过海量数据学习到的知识,会在推理时被激活和运用。这种能力虽然强大,但也存在局限性,比如容易产生幻觉(生成不准确的内容)和缺乏系统性推理。为了
模型搜索引擎是将大模型技术与传统搜索引擎相结合的产物,大模型搜索引擎特点更精准的答案生成:能够理解用户输入的自然语言问题,并生成更准确、更有条理的答案,而不仅仅是提供一系列链接。个性化搜索体验:基于对用户的搜索历史、偏好等数据的分析,为不同用户提供个性化的搜索结果和建议。多模态交互能力:除了文本输入输出外,一些大模型搜索引擎还支持图片、语音等多模态的交互方式,使用户可以更自然、更便捷地获取出相关研究的关键要点和主要观点,帮助用户快速了解该领域的研究现状。大模型搜索引擎优势提升搜索效率:减少了用户在搜索结果中筛选和查找信息的时间,能够快速满足用户的信息需求,让用户一步获取答案,提高搜索效率,为用户提供更广泛、更深入的信息,拓展了搜索的边界和深度,满足用户对专业知识和深度内容的搜索需求。大模型搜索引擎应用场景学术研究:帮助科研人员快速查找和整理相关文献资料,了解研究领域的最新进展和前沿观点信息。如用户可以直接对着搜索引擎说出问题,也可以通过上传图片来搜索相关信息。信息整合与提炼:可以对大量的文本数据进行整合和提炼,为用户提供简洁明了的综述和摘要。当用户搜索某一复杂的学术主题时,它能梳理
。Timelyre的存储组件TimeLyreStorage主要由分布式存储系统与时序存储引擎构成。分布式存储系统负责分布式元信息的一致性存储与分布式集群管理,基于RAFT协议来保证数据一致性与高可用性。时序存储,2021年美国商务部和安全局发布了新控制措施,禁止美国公司向中国和俄罗斯等“问题”的国家出口和转售网络安全产品,后续可能会受到一定的影响,另外在这些开源监控工具在SQL执行、用户管理、资源调度等方面大规模设备情况下,进程需要使用大量内存进行计算,服务的延迟波动较大,稳定性较差。安全能力不足,存在安全风险:InfluxDB安全管理主要依赖于命令行的方式,缺少图形化的运维管理工具,学习和使用门槛较高,并且极其依赖用户的运维管理能力,出现人为操作失误极难进行审计和安全回溯。InfluxDB使用jwt作为鉴权方式,在1.7.6之前的版本,当用户开启了认证但未设置参数shared-secret的情况下,jwt的认证密钥为空字符串,攻击者可以伪造任意用户身份在InfluxDB中执行SQL语句,带来巨大的安全风险。开源软件存在“被制裁”风险:Influxdata属于国外开源软件,其官网公开说明,产品和
模型推理平台哪些随着人工智能技术的快速发展,大型预训练模型已成为当前AI领域的重要研究方向和应用基础。这些拥有数十亿甚至数千亿参数的模型在自然语言处理、计算机视觉、语音识别等多个领域展现出惊人的过程、管理模型服务的软件系统或云服务平台。与训练平台不同,推理平台更注重模型的实时响应能力、资源利用效率和部署便捷性。这类平台通常提供模型加载、请求处理、资源分配、自动扩展等核心功能,使开发者能够专注于应用,监控告警、版本管理、A/B测试等运维功能也是现代推理平台的标配。选择推理平台的考量因素面对众多选择,用户需综合考虑多个因素。模型大小和类型决定了对计算资源的需求,不同平台对不同架构的优化程度各异。延迟能力。然而,如何有效地部署和运行这些"庞然大物",使其在实际应用中发挥价值,就需要依赖专门的大模型推理平台。大模型推理平台的基本概念大模型推理平台是指专门为大型人工智能模型提供计算资源、优化推理开发而非底层基础设施。主流大模型推理平台的类型当前市场上的大模型推理平台大致可以分为三类:公有云服务、私有化部署方案和开源框架。公有云服务用户按需付费使用,优势在于无需维护硬件、弹性伸缩能力强。私有化
Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型。主要通过自监督的增量训练和监督的指令微调,使用星环科技高性能计算集群训练而成。星环科技无涯使用上百万的高质量的专业金融语料,涵盖了研报、公告、政策星环无涯金融大模型针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯、新闻等高质量的自然语言文本,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的指令微调,从而使得无涯能够对齐专业研究员的分析推理能力,更加智能和可靠。在此基础上,星环科技无涯构建了包括政策、舆情、ESG、风险、量价、产业链等六类大模型基础因子集,所构建
语言模型。在模型训练微调阶段,SophonLLMOps工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对大语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六大统一,即统一纳管、统一运维、统一应用、统一监控、统一评估和统一解释外,还需要提供计算框架、工具以及计算、存储、通信的调度和优化支持,以满足大语言模型的微调、持续国内各大互联网公司纷纷投入AI大模型的研发,涉及多种类型的大模型。以下是星环科技大模型相关产品:星环无涯金融大模型-TranswarpInfinity星环无涯金融智能投研大模型TranswarpInfinity是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及演绎推理,以及政策研报的深度分析。通过事件驱动和深度图引擎,星环无涯支持事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研
交易型数据库是专门用于支持大规模事务处理(OLTP)的数据库系统。它主要用于存储和管理各种类型的交易数据,如订单、支付、库存、客户等。星环分布式交易型数据库-TranswarpKunDBKunDB是星环科技自主研发的分布式交易型数据库,具备高度兼容Oracle和MySQL、高可用、高性能、集中式与分布式一体化等特性,为企业核心业务系统提供完备的国产化数据库能力支撑。基于自研内存数据库引擎
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...