模型在线训练平台

星环大模型运营平台
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

模型在线训练平台 更多内容

模型训练平台是一个为开发者提供定制化大模型解决方案的平台,它汇集了行业内知名的大模型,通过轻量级的训练和丰富的训练方法,帮助开发者快速构建专属的大模型。以下是大模型训练平台的详细定义、功能和应用场景:定义大模型训练平台是面向AI开发者的一站式大模型开发及服务运行平台,基于云管基座平台和算力平台,为用户提供从数据管理、模型训练模型管理到模型服务的全流程开发支持。功能数据工程:提供数据导入、数据清洗、数据增强、数据管理等功能,并支持开源已处理的数据集。用户可以根据实际需求,依照平台数据格式要求上传数据信息或使用平台内的开源数据集,为后续训练、评估、编译等流程提供支撑。模型开发:提供模型训练模型调优、模型评测、模型量化编译等功能。平台提供丰富的预训练模型,用户可在平台上采用不同的训练方式(预训练、监督微调SFT)进行模型训练,不断调优迭代模型效果,从而提升模型性能。服务部署:提供模型自动驾驶的安全性和可靠性。个性化推荐:在电商与社交平台中,大模型通过分析用户行为和偏好,为用户提供精准的广告、内容和商品推荐,从而提升了用户体验和营销效果。
模型训练平台是指提供必要计算资源和工具,用于训练大规模机器学习模型的环境。这些平台通常包括高性能计算资源如GPU和TPU,以及数据存储和处理能力,支持深度学习框架,以便构建和优化复杂的神经网络模型。例如,星环科技的大模型训练平台就集成了其在大数据处理、存储和计算方面的优势,为用户提供高性能的计算资源、大规模数据管理能力以及深度学习框架的支持。星环大语言模型运营平台——SophonLLMOps为了帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型训练、上架和选代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。
行业资讯
建模训练平台
建模训练平台介绍在当今数字化时代,数据驱动的决策变得越来越重要。建模训练平台作为一种强大的工具,能够帮助企业和研究人员从海量数据中提取有价值的信息,构建精准的模型,为决策提供有力支持。平台功能数据诉求。平台优势低门槛操作:对于零基础用户友好,通过简单拖拽配置即可完成业务分析与模型构建,三小时快速学习、一步智能建模、一键快速部署。高效率建模:内置200+分析算子和各类自动学习机制,有效提高建模效率专业模型。内置丰富的行业案例,开箱即用,引导用户快速构建专属的业务模型。分析算法:拥有9大算法类型、120+分布式算法、5种独创算法、15种文本算法以及多种行业算法,强大的分析能力满足各类业务问题分析洞察能力,让建模流程显性化。提供全流程的节点洞察和丰富详细的洞察内容,支持洞察报告下载,帮助用户全方位观察建模过程、模型结果及数据结果,辅助用户开展模型的改进优化,提升模型有效性和精准度。模型部署:完善的模型管理及模型部署方式,满足多种工程化应用需求,包括同步、异步服务,版本管理,模型监控,流服务调度管理,离线服务包等。扩展编程:支持普通业务人员快速上手的轻量级数据准备,提供自定义算法、算法库建设
AI训练管理平台:开启智能新时代AI训练管理平台是什么?AI训练管理平台,从本质上来说,是一个集成了多种人工智能算法和模型的软件系统,其核心任务是进行人工智能模型训练与优化。在这个平台上,数据科学家和机器学习工程师能够轻松地对各种数据进行处理和分析,进而训练出满足不同需求的人工智能模型。以图像识别领域为例,研究人员可以将大量的图像数据导入AI训练管理平台平台会对这些图像进行预处理,如降噪、归一化等操作,之后运用卷积神经网络(CNN)等算法进行模型训练。通过不断调整模型参数,优化训练过程,最终得到一个高精度的图像识别模型,能够准确识别出各种物体、场景等。又比如在自然语言处理方面,利用平台训练语言模型,让机器能够理解和生成人类语言,实现智能聊天、文本摘要、机器翻译等功能。搭建AI训练管理平台的关键步骤搭建AI训练管理平台是一项复杂而系统的工程,需要遵循一系列严谨的步骤,以确保平台能够高效、稳定地运行,为AI模型训练提供有力支持。(一)需求分析明确平台的目标和需求是搭建AI训练管理平台的首要任务。这一步骤如同为建筑绘制蓝图,只有精确规划,才能确保后续工作的顺利开展。我们需要确定平台
行业资讯
模型训练
模型训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至。同时,可根据需要扩充词表,如添加常见汉字等,以提高模型对特定语言或领域的适应性。模型选择与架构搭建选择合适的预训练模型基座:模型架构在自然语言处理任务中表现出色,具有高效的特征提取和表示能力,能够为预训练提供良好的基础。设计与优化模型结构:加入注意力机制的优化,如多查询注意力机制、快速注意力机制,以及位置嵌入策略,以加速训练并提高模型性能。预训练过程无监督学习:采用无监督学习的方式,让模型自动从大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡
行业资讯
AI大模型训练
,并最终部署到实际应用中。AI大模型训练需要大量的计算资源和专业知识,旨在使模型能够理解和生成高质量的文本内容。星环大语言模型运营平台——SophonLLMOps为了帮助企业用户基于大模型构建未来AI大模型训练是一个复杂的过程,涉及使用深度学习技术对模型进行大规模的数据训练。以星环科技的无涯为例,作为一个基于大规模语言模型的智能助手,其训练过程通常包括以下几个关键步骤:数据收集:收集大量处理序列数据。训练过程:使用GPU或TPU等高性能计算资源对模型进行迭代训练,调整参数以最小化损失函数。评估与优化:在验证集上评估模型性能,并根据结果进行调优。测试与部署:在测试集上进一步验证模型效果应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型训练、上架和选代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。文本数据,这些数据可以来自互联网、书籍、文章等多源渠道,对于政务大模型而言,则侧重于政务相关的文档和资料。数据预处理:清洗和格式化数据,去除噪声和无关信息,确保数据质量。模型构建:设计神经网络架构,用于
。这种持续学习机制使模型能够适应不断变化的环境和数据分布。同时,随着机器学习技术的发展,一些新型算法如在线学习正在模糊训练与推理的界限,使得模型能够在推理过程中进行一定程度的自我调整。理解模型训练模型推理模型训练在人工智能和机器学习领域,"模型训练"与"模型推理"是两个核心概念,它们构成了机器学习系统从学习到应用的全过程。理解这两个环节的区别与联系,对于把握机器学习技术的基本原理至关重要。模型训练是指通过大量数据让机器学习算法自动调整内部参数,从而获得能够解决特定问题的数学模型的过程。这个过程类似于人类的学习经验积累。训练开始时,模型通常处于"无知"状态,其参数被随机初始化。随着训练数据的不断输入,模型通过特定的算法(如梯度下降)逐步调整自己的参数,使得在面对类似输入时能够产生越来越准确的输出。训练过程需要考虑许多因素:数据质量决定模型学习素材的优劣;损失函数衡量模型预测与真实值之间的差距;优化算法则负责指导参数调整的方向和幅度。训练好的模型本质上是一个包含了从输入到输出复杂映射关系的数学函数。与训练不同,模型推理是指将训练好的模型应用于新数据,产生预测或决策结果的过程。如果说
行业资讯
模型训练
泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。大模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环大语言模型运营平台-SophonLLMOps为了大模型训练是指在大规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。大模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:大模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。
语言表达,对于训练具有专业领域知识的大模型非常有价值,但需要注意版权问题。社交媒体数据:社交媒体平台上的用户生成内容,反映了当下社会热点、用户情感和各种生活场景,能够为模型提供更贴近实际应用的语言样本大模型训练语料是指用于训练人工智能大模型的文本数据集合。特点大规模性:大模型通常需要海量的语料来学习丰富的语言知识和语义信息,以提高模型的泛化能力和性能。一般来说,训练数据规模越大,模型能够学习到的质量和标注准确性,可直接用于特定任务的模型训练或作为预训练数据的一部分。书籍、文献和论文:包括各种专业书籍、学术文献、研究论文等,这些文本数据经过专业编辑和审核,质量较高,蕴含着丰富的专业知识和深度的,但数据的噪声较大,需要进行有效的处理和筛选。企业数据:一些企业拥有大量的内部数据,如客服记录、产品描述、用户评论等,这些数据与企业的业务和用户需求密切相关,可用于训练针对特定行业或领域的大模型,以提高。标注数据可用于监督学习,帮助模型学习特定任务的特征和模式,提高模型在该任务上的性能。数据划分:将语料划分为训练集、验证集和测试集。训练集用于模型训练,验证集用于在训练过程中调整模型的超参数和评估模型
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...