知识模型技术有哪些
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。
知识模型技术有哪些 更多内容

行业资讯
大模型技术有哪些?
广泛的语言知识和理解能力。微调技术:提供特定领域的标注数据集,对预训练的模型参数进行微小的调整,使模型更好地完成特定任务。参数高效微调技术:为了降低微调过程中的计算复杂度和资源消耗,研究者们提出了参数高效微调技术。这些技术共同支撑大模型在自然语言处理、计算机视觉、语音识别和推荐系统等多个领域的应用。大模型技术通过先进的架构、数据处理、训练优化和模型压缩等方法,使得具有海量参数的深度学习模型在多个领域展现出强大的应用能力。大模型技术主要包括以下几个方面:模型架构:大模型通常采用复杂的架构,它能够实现更好的全局信息捕获。数据处理与预训练:大模型需要使用海量数据进行去噪和清洗,并采用多模态融合技术将图像与文本联合编码。预训练目标包括自回归和自编码。模型训练与优化:大模型训练涉及分布式训练,包括数据并行和模型并行,以及优化技术如混合精度训练和大批量训练。模型压缩:为了减少模型大小,大模型采用模型蒸馏、参数量化和稀疏化等技术。预训练技术:通过海量无标注数据学习语言的统计模式和语义信息,使模型具备

行业资讯
大数据平台有哪些?
星环大数据基础平台-TranswarpDataHubTranswarpDataHub(TDH)是星环科技自主研发的企业级一站式多模型数据管理平台。凭借星环科技创新的技术架构和深厚的产品研发能力,TDH帮助企业加速数字化转型,更全面、更便捷、更智能、更安全地运用数据,大幅降低综合成本。基于星环大数据基础平台构建核心商业系统,是企业实现一站式数字化转型、加速业务创新的致胜关键。核心优势创新多模型技术架构,轻松胜任高阶数据分析:TDH采用领先的多模型技术架构,用于构建服务于整个企业的统一数据资源库,彻底打破不同部门间的数据隔阂,支持数据跨部门灵活调用,创造更大的数据价值。统一数据管理,保障数据一致,告别数据冗余:使用TDH可以轻松实现GB~PB级多源异构数据的高效存储和统一管理,TDH拥有自主研发的分布式数据管理系统TDDMS,统一管理多个数据模型,避免数据跨库导入导出,减少数据冗余,保障多个模型使用数据的高度一致。支持10种存储引擎、11种存储模型,自动化应对多部门业务需求:TDH通过10种独立的存储引擎,支持业界主流的11种存储模型。这10种存储引擎是:关系型分析引擎、宽表存储引擎

行业资讯
大模型微调技术有哪些?
适应技术来调整模型参数,使其更好地适用于新领域。多任务学习:同时解决多个相关任务以提高泛化能力。通过共享底层表示和特定于任务的顶层结构来实现。持续学习:使模型能够在不忘记先前学到的知识的情况下继续大模型微调技术是针对预训练的大模型进行进一步训练以适应特定任务或领域的一种方法。全连接层微调:在预训练模型的基础上添加一个或多个全连接层,然后使用目标任务的数据集对整个网络进行微调,重点调整新增的全学习新知识。这对于处理非静态环境和持续更新的数据集特别重要。知识蒸馏:将大型预训练模型的知识“蒸馏”到较小的模型中,后者可以在保持性能的同时减少计算成本。星环大语言模型运营平台-SophonLLMOps连接层参数。迁移学习:利用预训练模型的特征提取能力,将其作为固定特征提取器,仅对分类器部分进行训练。这种方法在数据量有限的情况下特别有效。适应性学习率:在微调过程中使用自适应学习率策略,以加速收敛并避免过拟合。分层微调:根据任务需求和计算资源限制,选择性地微调模型的部分层。例如,在资源有限的情况下,可能只微调最后几层。领域适应:当目标领域的数据分布与预训练数据不同(即存在领域差异)时,可以采用领域

技术博客
知识图谱的探索与应用
知识图谱到底是什么?语义网络是一种以网络格式表达人类知识构造的形式,是一种用实体及其语义关系来表达知识的有向图。而知识图谱是一种基于图的数据结构,是一种用图模型来描述知识和建模世界万物之间关联关系的和事件,并从关系的角度将这些信息有机整合在一起。关键的是,它能够基于一定的知识推理为AI的可解释性带来全新的一个视角。因此,知识图谱是认知智能底层的一种必要支撑。02知识图谱构建的基本流程有哪些?知识、时序分析5、智能搜索,支持单个实体和批量实体的快速查询6、文本标注组件KGAnno,支持实体、关系和文本分类3种标注任务7、全图探索,提供3D大图展示06知识图谱的典型使用场景有哪些?金融反洗钱场景大规模语义网络。知识图谱以半结构化的形式描述客观世界中概念、实体及其关系。在知识图谱里,我们通常用“实体”来表达图里的节点、用“关系”来表达图里的“边”。知识图谱有模式层和数据层,右边这张图是模式层过渡到认知智能领域。认知智能是人类特有的,建立在思考之上的智能。而思考建立在知识之上。AI要从感知智能迈向认知智能,本质上知识是基础,有了知识基础,AI才能形成推理机制。而知识图谱富含实体、属性、概念

行业资讯
知识库大模型
知识库大模型是通过机器学习、自然语言处理等技术手段,将海量信息进行深度整合与加工,形成的具有智能分析、推理和预测能力的知识库系统。它以大模型为基础架构,融合了大量的专业知识和数据,能够对各种问题进行等技术,将知识库中的知识与模型中的语言知识进行关联和整合。性能优化与评估:通过不断调整模型的参数、优化算法、增加数据量等方式,提高知识库大模型的性能和表现。同时,使用各种评估指标,如准确率、召回率、F1值等,对模型的性能进行评估和测试,确保模型的质量和可靠性。发展趋势跨领域融合:随着技术的不断进步和应用场景的不断拓展,知识库大模型将实现跨领域的深度融合,打破不同领域之间的知识壁垒,为更多复杂的跨解和推理知识,提高知识的应用效果和价值。强化学习与自适应能力:引入强化学习技术,使知识库大模型能够根据环境的反馈和奖励信号,不断调整自己的行为和策略,提高模型的自适应能力和决策能力。在面对复杂多变的实际问题时,模型能够更加灵活地应对和解决.隐私保护与安全增强:随着数据安全和隐私保护意识的不断提高,知识库大模型将更加注重数据的隐私保护和安全管理。采用加密、脱敏、访问控制等技术手段,确保知识库中的数据不被泄露和滥用,保障用户的隐私和安全。

行业资讯
专业的知识图谱有哪些?
知识图谱是一种用图模型来描述知识和建模世界万物之间关联关系的技术方法,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间大模型,打造具备高效人机交互的业务应用。同时星环科技积极参与行业共建,此前还参编了知识图谱领域首项国际标准IEEEP2807《知识图谱架构》、中国电子技术标准化研究院出版的《知识图谱标准化白皮书的相互联系。知识图谱被称为知识域可视化或知识领域映射地图。星环知识图谱平台-Sophon知识图谱作为机器认知智能实现的基础之一,是人工智能的重要组成部分。星环科技在知识图谱领域深耕多年,有着深厚的技术形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。知识图谱的目的在于将结构化数据、非结构化数据以及这些数据、实体之间的关联关系进行存储和表达。星环科技近期也推出了结合知识图谱、图数据库和向量大模型的问答系统,企业基于具体的行业知识语料,可快速构建更精通特定行业知识的领域

行业资讯
大模型推理模型有哪些
大模型推理模型有哪些近年来,人工智能领域取得了突飞猛进的发展,其中大语言模型(LLM)的崛起尤为引人注目。这些模型能够理解和生成人类语言,在问答、写作、编程等多个领域展现出惊人的能力。那么,这些大模型在推理时究竟采用了哪些方法呢?本文将介绍几种常见的推理模型。首先需要明确的是,大模型的推理过程可以分为两个层面:一是模型自身的推理能力,二是人们为提高模型推理效果而设计的外部方法。模型自身的推理能力主要依赖于其训练数据和架构设计,而外部方法则通过各种技术手段来激发和增强这种能力。在模型自身层面,现代大语言模型普遍采用transformer架构。这种架构通过自注意力机制,能够捕捉输入文本中的长距离依赖关系,从而建立起复杂的语言理解能力。模型在预训练阶段通过海量数据学习到的知识,会在推理时被激活和运用。这种能力虽然强大,但也存在局限性,比如容易产生幻觉(生成不准确的内容)和缺乏系统性推理。为了不断涌现。总的来说,大模型的推理能力既依赖于其本身的架构设计,也得益于各种外部方法的开发应用。从简单的思维链到复杂的思维树,这些方法正在不断提升大模型解决复杂问题的能力。未来,随着技术的进步,我们有望看到更加强大、更加可靠的AI推理模型出现。

行业资讯
大模型检索技术
大模型检索技术是一种结合了传统信息检索和大型语言模型(LLMs)的技术,它通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型,以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。检索增强内容生成(RAG):RAG技术通过在给模型发送消息之前首先进行内容检索,从其他数据源提取相关数据,然后插入到当前对话消息中给到模型,解决了模型既要知晓大量它不知道的知识,增强大模型的知识和记忆能力。它深入探讨了向量检索的基本原理、关键技术、应用场景及实践挑战。RAG的应用:RAG已成为当前最火热的LLM应用方案,许多产品几乎完全基于RAG构建,范围从结合了网络搜索引擎和大语言模型的问答服务,到数以百计的“与数据对话”的应用程序。提示往往依赖反复试验且效果不稳定。多模态检索:多模态检索技术涉及多个数据模态的检索,通过整合这些不同形式的数据,提供更全面的搜索结果。向量检索技术:在大模型应用场景中,向量检索技术能够支持提示词工程,又避免消息窗口不够的局限。提示工程(PromptEngineering):通过输入文本来引导预训练模型生成更符合行业要求的输出过程。这种方法可以简化多样任务处理流程,并能灵活适应广泛需求,但找到高效

行业资讯
大模型知识库
大模型知识库是一种基于大规模预训练语言模型构建的新型知识库系统,它将大模型的强大语言理解和生成能力与知识库的知识储备和管理功能相结合,为用户提供更智能、高效和便捷的知识服务。以下是具体介绍:技术原理与架构核心引擎:以大规模预训练语言模型,利用其对自然语言的理解和生成能力来处理用户的查询和提供答案。知识存储:采用非结构化文本数据的形式,通过自然语言处理技术将知识转化为模型可以理解的格式,能够容纳更广泛、更丰富的信息,包括文本、图像、音频等多种形式。检索与生成:借助深度学习技术和自然语言处理技术,实现对用户查询意图的自动识别和解析,将用户的自然语言查询转化为模型可理解的输入,并从知识库中检索相关信息,生成自然语言回答。与传统知识库的区别知识表示与存储:传统知识库主要以结构化数据形式存储知识,如实体、属性、关系等;而大模型知识库采用非结构化文本数据,能处理更广泛的知识形式,如文本、图像、音频等。查询与检索:传统知识库依赖精确匹配或基于规则的语义分析检索信息,用户需准确表达查询意图并使用特定查询语句或关键词;大模型知识库则可自动识别和解析用户的自然语言查询意图,无需考虑特定语法或关键词
猜你喜欢

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...