AI应用原生开发平台
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
AI应用原生开发平台 更多内容

行业资讯
AI开发平台
平台:技术民主化的推手AI开发平台通过提供标准化的开发工具和预训练模型,大幅降低了AI应用开发的门槛。开发者无需从零开始构建复杂的算法模型,而是可以基于平台提供的资源快速搭建AI应用。这种技术民主化的趋势,使得更多企业和个人能够参与到AI创新中来。主流AI开发平台通常包含数据处理、模型训练、部署优化等完整功能模块。提供了灵活的编程接口和丰富的算法库,开发者可以根据需求选择合适的工具进行开发。在应用成为AI开发平台的重要趋势。通过图形化界面和模块化设计,非专业开发者也能快速构建AI应用,这将进一步扩大AI技术的应用范围。自动化机器学习(AutoML)技术的成熟,使得模型选择、参数调优等复杂任务可以自动完成。这不仅提高了开发效率,还能帮助开发者获得性能更优的模型。在行业应用方面,AI开发平台正在向垂直领域深入。针对医疗、金融、制造等特定行业的专业化平台不断涌现,提供更贴合行业需求的解决方案。AI开发平台正在重塑技术创新和产业发展的格局。它不仅降低了技术门槛,还加速了AI应用的落地进程。随着技术的不断进步,AI开发平台将继续推动人工智能技术的普及和应用,为智能时代的到来奠定坚实基础。在这个充满机遇的新时代,掌握AI开发平台的使用能力,将成为个人和企业竞争力的重要组成部分。

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与部署更是如虎添翼。未来,MLOps将继续迭代更加丰富的功能,赋能企业AI更快、更好地落地。运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类

行业资讯
AI大模型应用开发
AI大模型应用开发是一个综合性的过程,涉及多个关键步骤和技术要点。1.明确应用场景和需求场景分析:深入研究目标行业和应用场景,例如医疗领域的辅助诊断、金融领域的风险评估、教育领域的个性化学习辅助等,如界面友好性、交互便捷性等。2.选择合适的大模型模型评估:根据应用需求,评估不同的AI大模型。考虑模型的性能指标,如在相关任务中的准确率、召回率等;模型的规模和复杂度是否适合部署环境;模型的预训练模型的性能。5.应用开发接口设计:设计应用程序接口(API),以便其他系统或软件能够方便地调用大模型的功能。API的设计应该遵循简单、稳定、安全的原则,并且要考虑到数据传输的效率和格式。前端开发:如果是面向用户的应用,需要开发用户界面(UI)。根据应用场景和用户体验需求,设计简洁、直观的界面,方便用户输入和获取信息。后端开发:搭建后端服务,处理业务逻辑和数据存储。后端需要与大模型进行交互,将用户输入的数据发送给大模型进行处理,并将大模型返回的结果进行解析和处理,然后返回给前端或其他系统。6.性能测试与优化性能测试:使用测试集对开发好的应用进行性能测试,评估模型的准确性、响应时间、吞吐量等

行业资讯
大模型应用开发平台
大模型应用开发平台是指那些专门设计用于构建、训练和部署大型深度学习模型的软件平台。这些平台提供了一系列的工具和服务,使得开发者能够更高效地开发和部署大模型应用。大规模数据处理能力:大模型应用开发平台模块化设计,每个模块都有清晰的功能和接口,开发者可以根据需求选择性地使用这些模块来构建自己的AI应用。数据集管理功能:提供强大的数据集管理功能,支持数据的导入、处理和版本控制,以便于模型训练和优化。可视化的Prompt编排:平台提供可视化工具,帮助开发者编排和管理Prompt,以提高模型的响应质量和准确性。应用运营工具:提供应用运营工具,帮助开发者监控应用性能,收集用户反馈,并进行必要的调整和优化。支持多种大型语言模型:平台支持多种大型语言模型,并与多个模型供应商合作,确保开发者能根据需求选择最适合的模型。性能调优与服务部署:平台提供性能调优工具,帮助开发者诊断分析和调试应用流,同时支持一键部署至生产环境,实现高效运营。能够处理和训练大规模数据集,这些模型通常参数量巨大,通过预训练和自监督学习等技术进行训练,能够处理复杂的任务并提升性能。多样化的应用场景:平台支持多种应用场景,如自然语言处理(包括机器翻译、语言理解

,企业内部会产生大量由各类算法框架训练生成的AI模型,对于模型开发和模型应用管理团队来说,如何管理这些AI模型,也是眼下亟待解决的问题。其实这些AI模型和企业数据一样,也是企业重要资产的一部分。对AI模型、算法进行有效的资产管理,有助于快速实现企业资源复用、降本增效的目标。为此,星环科技潜心研发了SophonMLOpsAI能力运营平台,致力于解决企业在机器学习模型开发及应用过程中遇到的痛点问题,提供标准化的AI能力运营服务。各类模型训练框架太多?SophonMLOps帮您统管SophonMLOps是星环科技基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署模型应用;可基于云原生基础架构,实现对模型应用的统一运维;平台还提供持续监控所有已上线的模型应用的功能,并评估模型预测性能,确保结果准确且稳定;同时为模型退出或迭代优化,提供重要参考。实施成效1.异构随着企业信息化的提升,AI模型也需要资产管理数据资产管理作为规划、控制、提供数据和信息资产的一组业务职能,其概念已经被大众所熟知。而随着企业对AI技术应用的日趋深入,在面对多样的AI应用场景下

技术博客
数据平台的云原生架构设计
云原生(CloudNative)是由MattStine在2013年提出的概念,其目标是为了解放开发和运维的工作,让应用能够更好的适合云架构。云原生是一种新的设计模式,它要求云原生应用具备可用性和,顾名思义,就是专门为在云平台上部署和运行而涉及的应用。采用云原生技术构造的应用,可以充分利用云平台来实现资源的按需分配和弹性伸缩;此外应用本身更加具备柔性,即在高并发压力下能够有效的缓解访问压力或者。原生云平台的一个主要特性就是面向微服务设计,使用容器的方式来编排普通的Web应用或者微服务。对于没有数据存储的无状态服务,容器有多种编排方式进行编排和管理;但是对于有数据状态的服务,如数据库(MySQL应用使用完结后再返还给资源池,平台会给不同的租户做资源配额限制;云存储服务是基于本地存储开发的分布式存储服务,会保留状态服务的数据,保证应用数据的终持久化和灾备能力;云网络是自研的网络服务,提供应用和的应用服务,包括大数据、AI、数据库类,以及各种微服务。—调度系统架构—本文设计的云平台的调度系统的内部架构如下图所示,包含元信息模块、对外服务模块以及调度决策模块。当一个应用通过

,与其它知名企业代表共同上台隆重举行了鲲鹏原生开发伙伴NRE协议签署仪式。星环科技致力于打造企业级大数据和人工智能基础软件,形成了大数据与云基础平台(TDH&TDC)、分布式关系型数据库、关系型分析引擎Inceptor、图数据库StellarDB、宽表数据库Hyperbase,以及分布式分析型数据ArgoDB五款产品已获得NATIVE鲲鹏原生开发认证。本次具体鲲鹏原生应用开发合作如下星环科技于今年5月在北京举办的鲲鹏开发者峰会上,正式宣布启动鲲鹏原生开发,随后积极开展基于鲲鹏硬件底座、openEuler开源操作系统、开发套件KunpengDevKit的多款核心软件原生开发,近期发布了面向政府、金融、能源、交通、教育、运营商等领域的高性能鲲鹏商用软件版本,为用户提供性能更优异且更安全的产品和解决方案。8月8日,星环科技副总裁杨新宇出席上海站2024鲲鹏原生开发活动圈层活动(ArgoDB&KunDB)、数据开发与智能分析工具(TDS&Sophon)、知识平台与领域大模型(TKH&无涯)的软件产品矩阵。早在2019年,星环科技与鲲鹏就开始展开全面合作

行业资讯
大模型应用开发平台
大模型应用开发平台是基于人工智能和大数据技术的应用程序开发平台,可以帮助开发人员快速构建和部署高质量的大模型应用。大模型应用开发平台通常提供一系列工具和框架,使用户能够轻松处理大规模的数据,并构建和训练复杂的深度学习模型。为开发人员提供了一个集成环境,可以大大简化大模型的构建和训练过程。大模型应用开发平台提供各种应用工具和接口,使开发人员可以方便地构建、训练和部署大模型应用,从而大大加快了开发流程。提供可视化界面,帮助用户轻松构建模型,提供了预训练模型库,用户可以根据需要轻松引用,节省大量时间和精力。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用大语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务,从而成功构建满足企业

TranswarpKnowledgeHub星环知识平台是星环科技发布的AIInfra产品,为用户打通了从AI基础设施到应用的完整链条。星环知识平台TKH拥有从语料开发及知识构建、大模型基础服务、知识多模态存储与服务、原生AI应用等完整的AIInfra工具集,能够促进高质量语料的开发与利用,并且提供提示词工程、检索增强、智能体构建等大模型应用快速构建和提升技术。此外,TKH支持异构算力、语料、知识、大模型应用的统一管理,为数据和语料资产的集约化提供了一站式平台,且具备企业级的组织空间管理能力。有了TKH的加持,数据能够高效地转换为专业领域知识,并且源源不断地支撑上层知识库问答、数据分析、智能投研、设备预测性维护等丰富的使用场景和应用,让企业真正基于知识实现业务创新。无涯·问知,一问便知星环无涯·问知InfinityIntelligence是一款基于星环大模型底座,结合个人知识库、企业知识库研究分析、企业供应链分析、法律风险预警、智能写作等丰富的业务场景中。无涯·问数,心中有数星环无涯·问数是一款基于星环数据分析大模型的智能业务分析洞察平台,能够帮助业务人员和决策者探索数据,获取准确的数据
猜你喜欢

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...