语料ETL服务
语料ETL服务 更多内容

行业资讯
数据仓库ETL
ETL是数据仓库中一个非常重要的过程,它代表提取(Extract)、转换(Transform)、加载(Load)。ETL是将数据从源系统(如关系数据库、文件系统等)转移到数据仓库的过程,并且在这个过程中对数据进行清洗、转换和整合,以确保数据仓库中的数据是准确、一致和可用的。以下是ETL过程的三个主要步骤:提取(Extract):从多个数据源中提取数据。这些数据源可能包括关系数据库、文件系统、云存储服务等。提取的数据可能包括结构化数据(如数据库表中的行和列)和非结构化数据(如文本文件、图片等)。转换(Transform):数据清洗:去除错误和不一致的数据,例如,修正格式错误、去除重复记录、填补,以提高查询性能和数据管理效率。更新数据仓库中的数据,确保数据的时效性和准确性。ETL过程通常需要自动化,以确保数据的及时更新和准确性。现代的数据仓库解决方案通常包括ETL工具,这些工具可以简化ETL过程,提供可视化界面以帮助用户定义ETL流程,并支持复杂的数据转换和集成任务。

行业资讯
什么是 ETL?
什么是ETL?随着企业的数据量、数据源和数据类型的增加,在分析、数据科学和机器学习计划中利用这些数据以获得业务洞察力的重要性也在增加。优先考虑这些计划的需求给数据工程团队带来了越来越大的压力,因为将原始、杂乱的数据处理成干净、新鲜、可靠的数据是实施这些计划之前的关键步骤。ETL是提取、转换和加载的缩写,是数据工程师用来从不同来源提取数据、将数据转换为可用和可信资源,并将数据加载到终用户可以访问和些则是半结构化的JSON服务器日志。转换:将从数据源中提取的原始数据转换为不同应用程序可以使用的格式。在这一阶段,数据将得到清理、映射和转换,通常是按照特定模式进行转换,以满足操作需求。这一过程需要进行诊断和修复任何数据问题。加载:加载功能是将转换后的数据从暂存区域写入目标数据库的过程,而目标数据库以前可能存在,也可能不存在。根据应用程序的要求,这一过程可能非常简单,也可能非常复杂。每个步骤都可以通过ETL工具或自定义代码完成。

行业资讯
ETL,ETL是什么意思?
ETL指Extract/清洗,Transform/转换,Load/加载,用户从数据源抽取出所需的数据,经过数据清洗,终按照预先定义好的数据仓库模型,将数据加载到数据仓库。这个过程中,ETL工具可以帮助用户自动化的完成数据从取、清洗、转换、加载等多个环节的工作,节了用户的时间和劳动成本,同时还能保证数据质量的一致性和准确性。ETL技术在大数据处理、数据仓库建设、商业智能、数据分析等领域都有广泛的应。在ETL过程中,每个环节都有其具体的目标和任务:Extract(抽取):从各种数据源获取数据,并将其转换成ETL系统可以处理的格式。这些数据源可以包括数据库、文本文件、XML文件、Web页面等。Transform(转换):ETL系统常会对从不同数据源中获取的数据进行转换操作,以适应在数据仓库中的格式和结构。这个转换操作可能包括数据清洗、字段重命名、数据拆分合并、数据格式转换等。Load(加载):在数据进行转换之后,ETL系统会将其加载到目标系统或数据仓库中。这通常涉及到对数据的验证和校验,以确保数据的准确性和完整性。ETL系统的主要目的是使数据仓库中的数据更容易被分析和利用,从而提高决策的

技术博客
ETL调优的一些分享(下)

行业资讯
从ETL到数据集成
数据处理流程。在ETL过程中,数据首先从源系统中被提取出来,然后经过清洗、转换和标准化处理,加载到目标数据仓库或数据库中。ETL技术诞生于20世纪70年代,当时主要服务于商业智能和报表需求。它的优势到来,数据集成(DataIntegration)逐渐取代ETL成为更广泛的概念。数据集成不仅包含ETL的功能,还涵盖了实时数据处理、数据虚拟化、数据服务化等更丰富的内涵。现代数据集成解决方案具有几个从ETL到数据集成:数据处理的演进之路在当今数据驱动的时代,企业每天都会产生海量的数据。如何有效地收集、整理和分析这些数据,成为企业决策的关键。数据处理技术从早期的ETL发展到现代的数据集成,经历了一段不断演进的历程。本文将带您了解这一技术演进的过程及其背后的意义。ETL:传统数据处理的基石ETL是"提取(Extract)、转换(Transform)、加载(Load)"的缩写,它描述了一个经典的在于能够将分散在不同系统中的数据集中起来,并转化为一致的格式,为分析提供便利。ETL通常采用批处理模式,在非高峰期(如夜间)运行,以避免影响业务系统的性能。然而,传统ETL也存在一些局限性。首先,它是

技术博客
ETL调优的一些分享(上)
ETL是构建数据仓库的重要一环。通过该过程用户将所需数据提取出来,并按照已定义的模型导入数据仓库。由于ETL是建立数据仓库的必经过程,它的效率将影响整个数据仓库的构建,因此它的有效调优具有很高的重要性。在实际应用中我们通常建议把ETL业务的调优分为若干思路,从而保证调优充分有序进行,避免遗漏,大化提升ETL的执行效率。我们将分上下两篇文章介绍ETL业务的调优手段。本文将首先介绍以下三个:检查资源CPU资源,另外单个executor不要超过16core。如果硬件配置比较不错,如服务器有40个以上CPUcore,建议采用多executor的方式来部署,譬如采用2executor每个10core的方式,会比1executor每个20core的效果更好。如果集群同时部署了其他服务,请保证其他的服务的资源前提下,给Inceptor部署尽量多的计算资源。计算资源的提高一般都会带来接近线性的分析性能hive-server2.log发现异常显示有等锁超时的现象,通过有效的规避锁竞争等问题来避免了这个问题,同时也发现系统性能和并发度有较大提升。总结本文介绍了关于ETL业务调优的三个思路,并针对每个调优步骤中具体的注意事项和调

行业资讯
大模型语料库构建
决方案,有助于提高模型在客户服务场景下的回答能力。二、语料清洗格式统一对收集到的语料进行格式转换,将不同来源的文本格式统一为适合模型处理的格式。噪声去除消除语料中的无关字符、乱码、广告信息等。同时,要去大模型语料库构建涵盖语料收集(含多渠道来源)、语料清洗、语料标注、语料分类与筛选以及语料更新与维护等多方面工作,各环节相互配合助力大模型训练与应用。一、语料收集互联网数据采集利用网络爬虫从各种网页包含一些未被数据库收录的学术资料,如学位论文、内部研究报告等。书籍数字化内容将经典著作、畅销书等书籍内容进行数字化处理后加入语料库。这些书籍内容丰富、语言规范,可以为大模型提供深度的知识和良好的语言表达范例。企业数据利用企业内部的文档,如产品说明书、用户手册、客服记录等都可以作为语料。以软件公司为例,产品的用户手册能够为模型提供关于软件功能、操作流程等方面的知识,客服记录则包含了用户常见的问题和解特殊词汇的拼写错误,可能需要结合专业词典或领域知识来进行纠正。三、语料标注词性标注对语料中的每个单词标注其词性,如名词、动词、形容词等。命名实体识别标注识别并标注语料中的人名、地名、组织机构名等命名
.jpg)
,重磅发布了语料生态服务大模型可持续发展倡议和2024语料风云榜。星环科技受邀参加2024WAIC语料主题论坛,共同发起语料生态服务大模型可持续发展倡议,同时荣登2024语料风云榜。高质量、大规模、安全可信的语料资源是迈向AI时代的重要基石。语料生态服务大模型可持续发展倡议旨在建立模型训练、语料供给、学术研究、第三方服务等多方机构合作机制,携手打造资源共享、互利共赢、国际融通的“语料生态圈”,有力支撑的完善做出了重要贡献;成为大模型责任联盟首批成员单位,积极携手各联盟伙伴,共建大模型良性发展生态等。此次星环科技共同发起语料生态服务大模型可持续发展倡议,将充分发挥自身在语料开发和管理、AI基础设施7月6日,在2024年世界人工智能大会(WAIC),由大模型语料联盟、上海库帕思科技有限公司、上海市数商协会、上海市人工智能行业协会联合主办的“语料筑基,智生时代”2024WAIC语料主题论坛上大模型科研攻关,更好推动大模型产业创新发展。2024语料风云榜面向国内外人工智能语料的代表企业,旨在遴选语料行业优秀企业和案例,打造标杆示范,鼓励更多的市场主体投身于语料产业生态布局,推动语料全行业提

行业资讯
大语言模型语料库
方法ETL工具:用于数据抽取、转换和加载。数据清洗工具:用于数据清洗和预处理。标注工具:用于数据标注和标注管理。向量化工具:用于文本向量化。聚类工具:用于文本聚类。5.语料库的存储和管理文件系统:将大语言模型语料库是指用于训练大语言模型的大量文本数据集合。这些语料库通常包含各种类型的文本,如书籍、新闻文章、网页内容、社交媒体帖子、学术论文等,以确保模型能够学习到广泛的语言模式和知识。以下是大语言模型语料库的详细解释:1.语料库的来源书籍:经典著作、畅销书、专业书籍等,提供深度的知识和良好的语言表达范例。新闻文章:涵盖各种新闻事件和时事,帮助模型了解当前的社会动态和热点话题。网页内容:来自概念。企业内部文档:如产品说明书、用户手册、客服记录等,提供特定领域的知识和实用信息。2.语料库的处理步骤数据收集:从各种来源收集文本数据,确保数据的多样性和广泛性。数据清洗:去除无关字符、乱码、广告嵌入。数据聚类:将相似的文本聚类,以便模型更好地学习语言模式和主题。3.语料库的类型通用语料库:包含多种类型的文本,覆盖广泛的主题和领域。领域特定语料库:针对特定领域或行业,如医疗、金融、法律等,提供更
猜你喜欢

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...