多模型兼容大模型平台
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。
多模型兼容大模型平台 更多内容

行业资讯
多模态 大模型
多模态大模型是指将文本、图像、视频、音频等多模态信息联合起来进行训练的模型。这种模型可以处理和分析多种类型的数据,例如文本、图像、视频和音频,从而更全面地理解和利用各种信息。多模态大模型的训练通常采用深度学习技术,通过对大量多模态数据进行学习,模型能够从数据中提取出更丰富、更复杂的信息。多模态大模型在许多领域都有应用,例如自然语言处理、计算机视觉、音频处理等。可以用于文本和图像的语义理解、视频的分类和识别、音频的情感分析和语音识别等任务。通过多模态大模型,我们可以更好地理解和处理复杂的多模态数据,提高人工智能的应用性能。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用大语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务

行业资讯
多模态大模型
。大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多多模态大模型指的是将本、图像、视频、音频等多模态信息联合起来进行训练和处理的深度学习模型。通过对这些不同媒介数据进行联合分析,该模型可以提高数据的处理和分析效率,从而获得更加准确和全面的信息。多模态大模型可以应用于许多方面,例如自然语言处理、图识别、视频分析等。它的发展正呈现出越来越广泛的应用前景,将会在未来的技术创新和领域应用方面发挥重要作用。与传统模型相比,多模态大模型可以处理更加细致和复杂模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的

行业资讯
大模型运营平台
提示词工程、检索增强、智能体构建、模型推理优化、模型安全和持续提升等大模型开发落地的全流程,同时兼容传统机器学习和深度学习模型,一站式满足企业全A1场景需求。此外,平台支持GPU/NPU异构算力星环大模型运营平台TranswarpLLMOps是面向企业级用户的大模型全生命周期运营管理平台,旨在帮助企业快速、高效、闭环地将大模型落地至业务场景中。平台覆盖语料、模型、应用三大核心要素,打通了从(ARM/x86)混合部署、资源精细化切分和调度、海量多源模型统管、全局状态监控及预警等企业级功能。SophonLLMOps提供语料知识沉淀、高质量资产共享、灵活应用开发、可持续服务运营等能力,有助于降低企业使用门槛,并支持多种开发方式,具备企业级功能和安全防护,保障数据安全和合规性。

行业资讯
多模态大语言模型
多模态大语言模型是一种能够结合多种输入模态的语言模型。传统的语言模型只能以单一的语言文本为输入进行建模,而多模态大语言模型同时考虑图像、音频视频等多种不同的输入模态。多模态大语言模型不仅可以处理文本数据,还可以处理图像、音频、视频等多种媒体形式的数据,因此具有更全面的信息理解和生成能力,并能够在不同媒体之间进行跨模态的转换和推理。多模态大语言模型的基本原理是将不同媒体形式的数据进行编码,并通过。多模态大语言模型还依赖于LLM丰富的知识储备以及强大的推理和泛化能力来解决多模态问题。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的共享的语义空间进行交互和融合。具体而言,模型通过将文本、图像、音频等数据输入到不同的编码器中,将其转化为向量表示。然后,通过共享的语义空间,将不同媒体的向量进行交互和融合,从而实现多模态信息的理解和生成工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助

行业资讯
多模型,什么是多模型?
不同类型的应用程序和数据需求。不管是哪种类型的数据模型,多模型都可以提供一个统一的数据访问和管理平台。多模型大数据基础平台-TranswarpDataHub星环大数据基础平台(TDH)是星环自主研发的一站式多模型大数据基础平台,包括多个大数据存储与分析产品,能够存储PB级别的海量数据,可以处理包括关系表、文本、时空地理、图数据、文档、时序、图像等在内的多种数据格式,提供高性能的查询搜索、实时数据的复杂性和多样性的不断提高,单一的数据模型往往不能满足所有的需求。因此,多模型被广泛用于大规模的数据管理系统中,以满足不同类型的应用程序和数据访问需求。多模型的一个优是它可以在同一数据系统中处理多个数据模型多模型是指在一个数据系统中支持多种不同的数据模型。传统上,数据系统被设计为支持特定的数据模型,例如关系数据库管理系统(RDBMS)支持结构化数据模型,而文档数据库支持半结构化数据模型。但是,随着。这意味着一个应用程序可以同时使用不同的数据模型,而不需要多个不同的数据系统来管理不同类型的数据。这可以大大简化系统的架构,并降低了系统的维护成本。另一个优点是多型可以提供更好的数据访问性能

行业资讯
大模型多智能体
大模型多智能体技术是指利用大型语言模型(LLMs)来驱动多个智能体,以实现更高级的协作和决策能力。大模型多智能体系统是指利用规模庞大、训练数据丰富的语言模型或多模态模型作为核心组件的智能体系统。这些系统具备高度的自然语言处理和全面的知识,能够理解和生成类似人类的指令,促进在广泛的情境中的复杂交互和决策。大模型应用大模型多智能体技术在多个领域有广泛的应用,包括但不限于:经济与金融:利用多智能体模型应用。大模型技术进展具身智能(EAI):推动通用人工智能(AGI)发展的关键技术,涵盖计算机视觉、自然语言处理和机器人技术,尤其在具身感知和交互方面表现突出。多模态大模型:助力企业数字化转型,通过跨真正的AGI(通用人工智能)迈出了重要一步。数字化转型多模态大模型如何助力企业数字化转型,利用数字技术彻底改造原有的商业模式、运营模式和生产/服务模式,实现能力的全面升级。构建人工股票市场,探索资产定价、投资者行为和市场波动等金融问题。政治模拟和预测:通过模拟政治过程中各种参与者的行为和互动,预测政治事件的发展趋势、选举结果和政策效果。社会学:利用多智能体模型研究社会

CDH,不仅性能提升,具有更强的多模型拓展能力,并提供全套工具集,自主研发,实现国产软硬件兼容,满足信创要求。在搭建大数据平台时,选择TDH还是CDH,就变得简单了,是一目了然的事情。大数据基础平台TDH。TDH基于领先的多模型统一技术架构,提供统一的SQL接口、统一的计算引擎、统一的数据管理系统和统一的资源管理系统,通过9种独立的存储引擎,支持业界主流的10种存储模型:关系型数据极高,数据流转和融合分析等数据处理效率低。那有没有一种架构或者方案,不需要为不同的业务需求单独部署不同的产品,一套平台就可以全部搞定,又能实现自主可控呢?有,星环科技自主研发的基于多模型统一技术架构的存储、宽表存储、搜索引擎、地理空间存储、图存储、键值存储、事件存储、时序存储、文本存储、对象存储。在一个数据库中实现多种数据模型(如关系表、文本和图片)的统一存储管理,一个SQL就可以实现不同数据模型的操作和查询,模型转化流转以及跨模型关联分析,解决了不同模型数据之间的组合使用问题。与CDH散装架构相比,TDH统一的多模型架构具有复杂度低、开发成本低、运维成本低、数据处理效率高等优点。TDH相比

行业资讯
多模型数据库
多模型数据库是一种在统一、综合的平台下同时支持多种不同的数据模型的数据库,数据模型可包括传统的关系模型和NoSQL数据模型(文档模型,键值模型,图模型),多模型数据库拥有一种或多种查询语言。传统的数据库来解决多样化的数据问题。这样可以极大地简化开发和维护过程,并提高系统的灵活性和性能。此外,多模型数据库还可以提供更好的数据一致性和可靠性。通过统一的平台和多种数据模型的支持,可以更方便地进行数据的管理、备份和恢复。同时,多模型数据库也可以提供更好的水平扩展能力,可以根据数据的类型和访问模式进行优化,以提供更高的系统性能。多模型数据库是一种可以同时支持多种不同数据模型的数据库平台,通过统一的平台和关系型数据库使用表格组织数据,通过进行查询和操作。然而,随着大数据和分布式计算的兴起,关系型数据库在某些场景下的性能和扩展性限。为了解决这些问题,NoSQL数据库应运而生,提供了更灵活、可扩展的数据模型和分布式架构。多模型数据库的出现可以认为是将关系型数据库和NoSQL数据库的优点集中起来,以应对不同的数据需求。它能够同时存储和管理多种数据模型,使得开发人员可以根具体的应用场景选择适合的数据模型。在

行业资讯
大模型平台
大模型平台是指基于大规模参数的机器学习模型构建的平台,这些平台通常提供模型训练、部署、推理等服务,支持多种应用场景。以下是对大模型平台的详细阐述:定义大模型平台是基于具有大规模参数和复杂计算结构的机器学习模型构建的平台。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型平台的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。特点巨大的规模:大模型包含,能够在各种任务上表现出色。多任务学习:大模型通常会一起学习多种不同的任务,如自然语言处理中的机器翻译、文本摘要、问答系统等。大数据训练:大模型需要海量的数据来训练,通常在TB以上甚至PB级别的数据集,如文本分类、问答、对话、内容总结等。计算机视觉:视觉大模型用于图像处理和分析,能够实现图像分类、目标检测、图像分割、姿态估计、人脸识别等任务。多模态应用:多模态大模型能够处理多种不同类型的数据,如文本、图像、音频等,结合了自然语言处理和计算机视觉的能力,以实现对多模态信息的综合理解和分析。企业数字化:在企业数字化领域,大模型可用于知识库问答系统、问答式BI系统、智能体系统等,满足设备故障预测、电力负荷预测、供应商评估分析等智能化应用和预测场景。
猜你喜欢

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...