大模型优化工具

行业资讯
模型
模型是一个复杂但关键的过程,对于提高模型性能、准确性和效率很重要。1.数据预处理与增强:数据清洗:去除噪声数据,确保训练集的质量,包括去除重复数据、处理缺失值和异常值等。数据增强:通过合成关系的处理能力。3.超参数调:网格搜索与随机搜索:通过定义一个超参数空间,并在该空间中进行离散的搜索,以找到最优的超参数组合。贝叶斯优化:一种高效的超参数优化方法,通过构建概率模型来预测性能指标,并:根据任务需求调整模型的深度和宽度。较深的模型能够捕捉更复杂的特征,但计算复杂度也更高;较宽的模型则能够并行处理更多信息,但可能导致过拟合。注意力机制优化:改进或引入新的注意力机制,提高模型对长距离依赖泛化能力。权重衰减:通过在损失函数中添加权重的L2正则项,减少模型权重的规模,防止过拟合。早停法:在训练过程中,当验证集上的性能不再提升时停止训练,以防止过拟合。5.分布式训练与并行优化:数据并行:将、变换等方式增加数据多样性,提升模型的泛化能力。例如,在文本数据中可以通过同义词替换、回译等方式进行数据增强;在图像数据中则可以通过旋转、缩放、裁剪等方法进行数据增强。2.模型架构调整:层数与宽度调整

大模型优化工具 更多内容

满足化工企业在数据处理、模型计算、仿真模拟等方面的多样化需求。在化工生产过程模拟中,需要进行大量的数值计算和模型求解,强大的计算资源可以确保模拟过程的高效运行,快速得出准确的模拟结果,为生产工艺优化反应过程模拟、精馏塔设计等方面发挥重要作用。数据驱动模型则利用数据分析和机器学习技术,从大量历史数据中挖掘数据之间的关联和规律,实现对生产过程的预测和优化,如产品质量预测、设备故障预测等。混合模型结合了机理模型和数据驱动模型的优点,能够更全面、准确地描述化工生产过程,提高模型的精度和可靠性。通过模型构建,数字底座能够将化工专家的经验和知识转化为可执行的数字化模型,实现生产过程的智能化控制和优化数据的分析,企业能够及时发现环境隐患,并采取相应的修复措施。降本增效与可持续发展从能耗降低方面来看,化工企业的生产过程通常需要消耗大量的能源,能源成本在企业总成本中占比较高。数字底座通过优化生产流程和化工企业的数字蝶变:数字底座如何重塑未来什么是化工企业数字底座数字底座的定义与内涵数字底座,作为化工企业数字化转型的关键支撑,是一个融合了计算资源、数据和模型的一体化软件平台。它向下连接并汇集
应用之间,存在着巨大的差距,需要通过LLMOps工具链来改造和优化现有的通用模型,形成真正能够在某个行业内专精的领域模型,真正让语言模型技术更好地服务企业。为了帮助企业用户基于模型构建未来应用、统一运维、统一应用、统一监控、统一评估、统一解释外,针对语言模型的微调、持续提升、评估、对齐等提供从计算框架、工具到计算、存储、通信的调度和优化支持。第三,SophonLLMOps具有语言模型和,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型的训练、上架和迭代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施、传统机器学习、其他流程等编排成符合用户实际领域和业务需求的任务,并为客户提供服务。星环科技SophonLLMOps解决了客户三个核心痛点:首先,提供一站式工具链,帮助客户完成“通用语言模型”的训练在语言模型快速发展的今天,语言模型能够更好地帮助计算机了解人类的意图。但是企业在实际使用中会发现,由于通用语言模型缺乏领域知识和知识推演能力,无法实际完成许多专业任务。在通用语言模型和企业
最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型缺点。模型优化工具:基于评估结果,提供模型优化工具,如模型压缩、量化、剪枝等技术,减少模型的存储空间和计算量,提高模型的运行效率和部署灵活性。模型部署功能多平台支持:支持将训练好的模型部署到多种平台上,包括云平台、本地服务器模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与管理:具备强大的数据存储能力,可高效管理海量数据,支持数据的版本控制、数据备份与恢复等功能,确保数据的安全性和完整性。模型训练功能多种算法支持:支持多种深度学习算法和模型架构,以满足不同应用场景下的模型
知识图谱可视化工具是一种用于将知识图谱数据可视化展示的工具。知识图谱是一种基于语义网络的数据结构,用于表示实体(如人、地点、组织等)之间的关系。知识图谱可视化工具可以将这些实体和关系以图形的形式呈现出来,使人们更加直观地理解知识图谱的结构和内容。这些工具通常具有交互式界面,可以让用户自由导航并进行查询和分析。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控
解锁模型开发管理平台:AI时代的“魔法工坊”模型开发管理平台介绍概念:模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行模型的开发、训练、优化、部署以及后续的管理维护工作。它运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在不同工具和平台间切换的时间,自动化的流程和丰富的模板,进一步缩短开发周期。保障模型质量:完善的模型评估和优化机制,以及对算力资源的合理调配,有助于训练出高性能、高稳定性的模型。应用场景智能客服:利用整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源模型,开发者无需从头构建模型,可选择合适的预训练模型进行微调或直接应用,大大减轻模型集成负担。低门槛开发:具备零代码、免配置、免调模型开发能力。通过沉淀大量适配和调推理参数的最佳实践,提供一键式训练、自动超参调等功能,让模型优化不再依赖手动尝试,缩短
。可视化的Prompt编排:平台提供可视化工具,帮助开发者编排和管理Prompt,以提高模型的响应质量和准确性。应用运营工具:提供应用运营工具,帮助开发者监控应用性能,收集用户反馈,并进行必要的调整和优化模型应用开发平台是指那些专门设计用于构建、训练和部署大型深度学习模型的软件平台。这些平台提供了一系列的工具和服务,使得开发者能够更高效地开发和部署模型应用。规模数据处理能力:模型应用开发平台。支持多种大型语言模型:平台支持多种大型语言模型,并与多个模型供应商合作,确保开发者能根据需求选择最适合的模型。性能调与服务部署:平台提供性能调工具,帮助开发者诊断分析和调试应用流,同时支持一键部署至生产环境,实现高效运营。能够处理和训练规模数据集,这些模型通常参数量巨大,通过预训练和自监督学习等技术进行训练,能够处理复杂的任务并提升性能。多样化的应用场景:平台支持多种应用场景,如自然语言处理(包括机器翻译、语言理解模块化设计,每个模块都有清晰的功能和接口,开发者可以根据需求选择性地使用这些模块来构建自己的AI应用。数据集管理功能:提供强大的数据集管理功能,支持数据的导入、处理和版本控制,以便于模型训练和优化
模型推理优化是指通过一系列技术和方法,提高大模型在推理阶段的性能和效率,使其能够更快速、更高效地生成结果,同时降低对硬件资源的需求。模型量化原理:将模型的参数从高精度的数据类型转换为低精度的,能够显著提高模型的推理吞吐量和降低延迟。挑战:需要对不同的推理框架和硬件平台有深入的了解,以便根据具体的模型和应用场景选择最合适的组合,并进行相应的配置和优化。分布式推理原理:将模型的推理任务分布知识,并且在不同的任务和数据集上具有良好的泛化能力。优化推理框架和硬件加速原理:选择高效的推理框架,并充分利用硬件的特性进行加速。优势:这些框架通过对模型的计算图进行优化、并行化处理以及与硬件的深度融合到多个计算节点或设备上并行执行,从而加速推理过程。可以采用数据并行、模型并行或混合并行等方式来实现分布式推理。优势:能够充分利用集群的计算资源,处理规模的推理任务,提高推理的效率和可扩展性,适用于对数据类型,如从32位浮点数转换为8位整数或4位整数等,从而减少模型存储和计算所需的内存空间和计算量。优势:显著降低模型的内存占用和计算资源消耗,加速推理过程,使模型更容易部署到资源受限的设备上,如移动设备和
,SophonLLMOps针对语言模型的微调、持续提升、评估和对齐等方面提供了从计算框架、工具到计算、存储和通信的调度和优化支持。后,它还具备语言模型和其他任务的编排、调度和上线能力。SophLLMOps提供Agent推理和决策等方面。要构建行业大模型,需要投资大量算力、基础模型、LLMOps工具链、语料库、练指令集和应用开发等,各行业领先企业都在思考如何解决这些瓶颈问题。模型让现有数据范式发生了很大的改变,我们需要新的工具来适应这种变革。为了帮助企业用户更好地基于模型构建未来应用,星环科技推出了SophonLLMOps,这是一款强大的工具,将提供全流程支持模型训练、部署和,助力企业构建行业大模型,应对未来发展挑战。SophonLLMOps是一款功能强大的模型开发工具,具备三能力。首先,它拥有样本仓库能力。该能力涵盖了训练数据开发、推理数据开发和数据维护,可以对语言模型所涉及的原始数据、样本模型的概念虽然想象中很美好,但在现实中要落地却面临着很多挑战。虽然模型在自然语言理解、文本生成、图像生成等方面具有惊人的表现,但是在行业领域内,它仍然无法理解专业术语、执行特定任务,以及进行分析
模型推理优化在人工智能领域,大型语言模型(LLM)已成为研究和应用的热点。这些模型在文本生成、问答系统、代码补全等任务上表现出色,但其庞大的参数量也带来了显著的推理成本。如何优化模型的推理过程,使其在保持性能的同时更加有效,成为当前研究的重要方向。推理优化的必要性模型的推理过程涉及大量矩阵运算和参数访问,对计算资源和内存带宽要求很高。例如1750亿参数在推理时需占用数百GB内存,单次推理可能消耗数秒甚至更长时间。这种高延迟和高成本限制了模型在实际场景中的应用,特别是在边缘设备或实时系统中。因此,推理优化不仅是技术挑战,也具有显著的经济价值。主要优化技术模型压缩是常见的优化手段。通过减少参数量。计算图优化通过分析模型的计算流程,消除冗余操作,融合连续层,优化内存访问模式。例如,将多个矩阵乘法合并为一个操作,可以减少中间结果的存储和传输开销。算子融合技术特别适合GPU等并行计算设备量化技术,将模型参数从32位浮点数转换为8位或4位整数,可大幅减少内存占用和计算量,而精度损失通常控制在可接受范围内。知识蒸馏则是训练一个小型"学生模型"来模仿大型"教师模型"的行为,保留关键知识的同时
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...
行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...
行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...
企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...