如何设计企业级AI中台

为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与部署更是如虎添翼。未来,MLOps将继续迭代更加丰富的功能,赋能企业AI更快、更好地落地。运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且

如何设计企业级AI中台 更多内容

预测,为企业决策提供参考依据。风控台风控企业级风控数据的核心引擎,它专注于风险指标设计、策略预置以及决策引擎等关键能力,如同一位经验丰富的风险管理者,运用专业的知识和技能,对风险进行精准识别解锁企业级风控数据:数字化时代的金融安全卫士什么是企业级风控数据(一)定义解析企业级风控数据,是一种将数据与风控能力深度融合的创新型平台,它如同企业风险管理的“智慧大脑”,通过整合企业级风控数据的基础支撑,它承担着数据汇聚、治理、加工等重要任务,如同一个庞大的数据工厂,将来自不同源头的“原材料”数据,经过一系列精细的处理,转化为高质量的数据产品,为风控业务提供坚实的数据基础、评估和控制。风险指标设计是风控的基础工作,它根据企业的业务特点和风险偏好,制定一系列量化的风险指标,用于衡量风险的大小和可能性。这些指标涵盖信用风险、市场风险、操作风险等多个维度,如信用风险指标数据资产,再结合专业的风控模型和策略,对企业运营过程的各类风险进行实时监测、评估和预警,帮助企业提前发现潜在风险,及时采取有效措施加以应对,从而保障企业的稳健运营。(二)核心构成数据数据
数据企业级数据复用平台在数字化浪潮席卷全球的今天,数据已成为企业核心的资产之一。如何高效管理和利用这些数据,成为企业面临的重要课题。数据作为一种新兴的企业级数据架构理念,正在改变传统的传统ETL工具的替代品,而是一种全新的数据管理思维模式。数据的核心价值在于"一次建设,多次复用",通过构建企业级的数据资产中心,避免重复的数据处理工作,提高数据使用效率。与传统数据管理方式相比数据管理方式,为企业构建了一个可持续复用的数据资产平台。数据的概念与价值数据是指企业将分散在各个业务系统的数据进行整合、治理和标准化后形成的统一数据服务平台。它既不是简单的数据仓库升级版,也不是重要组成部分,相当于企业数据的"地图"和"说明书",让业务人员能够快速找到并理解所需的数据资源。数据的应用场景数据的应用场景十分广泛。在客户洞察方面,通过整合各渠道的客户数据,企业可以构建360度客户视图,实现精准营销和个性化服务。在运营优化方面,实时汇聚的运营数据可以帮助企业快速发现问题,调整策略。在风险控制领域,跨系统的数据关联分析能够更早识别潜在风险。此外,数据还为人工智能应用提供了高质量的训练数据基础。
行业资讯
企业级数据湖
企业级数据湖是指为满足企业级应用需求而设计的、具备高性能、高可靠性和高安全性的数据湖解决方案。以下是企业级数据湖的关键特点和组成部分:统一存储和管理:企业级数据湖采用对象存储作为统一存储,将各种类型存储解耦合:企业级数据湖采用计算与存储解耦合的架构设计,让计算和存储资源具备更好的可扩展性,为大数据处理提供了更灵活的系统架构设计。无缝对接多种计算引擎:企业级数据湖能够无缝对接多种计算分析平台分析。一站式数据管理:依托业界领先的SLA,企业级数据湖可以对数据湖各种类型和规模的数据完成数据集成、开发、编制目录以及安全和服务管理。弹性数据处理资源:企业级数据湖支持动态创建和扩缩计算节点,以的数据以集中方式进行统一管理,解决了数据孤岛问题,降低了运维管理的难度。支持多种数据类型:企业级数据湖支持结构化、半结构化、非结构化等多种类型数据的直接存储,提供了便捷的数据接入和数据消费通道。计算与,直接进行数据处理和分析,无需额外的处理步骤。数据湖元数据管理:企业级数据湖提供湖上元数据统一管理、企业级权限管理等服务,帮助用户快速地构建云原生数据湖架构。数据安全与合规性:企业级数据湖注重数据安全和合规
构建企业级大模型:解锁AI新潜能在人工智能技术快速发展的今天,大模型已成为推动企业数字化转型的核心引擎。企业级大模型不同于普通的AI模型,它是专为企业场景定制开发,具有行业知识深度、业务理解能力和等技术手段,确保模型使用过程的数据安全和隐私保护。同时,模型具备自我监控和预警能力,能够及时发现并处理异常情况。二、构建路径与方法构建企业级大模型需要科学的路径规划。首先进行需求分析,明确模型要解决。需要收集整理企业历史数据,进行清洗和标注,构建高质量的训练数据集。训练过程采用迁移学习、增量学习等技术,不断提高模型性能。最后通过严格的测试评估,确保模型达到预期效果。企业级大模型的构建是一个持续安全可控性的大型人工智能系统。一、企业级大模型的核心特征企业级大模型具备三大核心特征:强大的行业知识库、精准的业务理解能力和可靠的安全保障体系。以金融行业为例,一个合格的企业级大模型不仅要理解通用的金融知识,还要掌握特定银行的业务流程、产品体系和风控要求。这种深度定制使得模型能够准确理解业务场景,提供可靠的决策支持。在安全性和可靠性方面,企业级大模型采用多重防护机制。通过数据加密、访问控制、行为审计
企业级向量数据库是一种专门为企业级应用而设计的向量数据库,其主要提供高效的向量存储和检索服务,适用于大规模数据的存储和分析以及机器学习等领域的应用。企业级向量数据库-TranswarpHippoTranswarpHippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量式数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题。Hippo具备高可用、高性能、易拓展等特点,数据修复等数据保障能力。企业级安全:Hippo可提供基于SASL的用户认证能力,以及基于SSL/TLS的数据加密传输。高性能检索:Hippo支持多进程架构与GPU加速,可以充分发挥并行检索能力;同时,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性检索等场景。TranswarpHippo产品优势云原生系统支持多类索引,满足不同业务场景;支持检索速度和内存使用的特定优化,支持寄存器算法优化。多模型联合分析:基于多模型统一技术架构,向量数据与关系型数据、图数据、时序数据等多种模型数据进行统一存储管理,通过
一文搞懂、业务、数据AI区别及联系在数字化转型浪潮,""概念已成为企业技术架构设计的热门话题。然而,面对业务、数据AI等不同概念,许多人容易混淆。本文将系统梳理这些概念的区别与联系,帮助读者建立清晰认知。概念的起源与本质概念起源于军事领域,后被互联网行业引入技术架构设计。其核心思想是通过构建共享能力层,解决企业"前台"业务快速变化与"后台"系统稳定决策支持。AI则依赖数据提供高质量数据,同时为业务注入智能化能力。三者共同构成了企业数字化转型的基础设施。在实际应用企业应根据自身发展阶段和需求,合理规划建设路径。通常建议先建设业务,夯实业务标准化基础;再建设数据,释放数据价值;引入AI,实现业务智能化升级。建设不是目的而是手段,其目标是提高企业响应市场变化的能力。理解各类的区别与联系,有助于企业在数字化转型选择适合自身的路径,避免盲目跟风。未来,随着技术发展,概念还将不断演进,但其"能力复用、快速创新"的核心思想将持续影响企业架构设计
,简化算法的开发、设计和部署过程,提高企业的决策能力和运营效率。另外,业务和数据的时间轴比较前置,数据是后置的,而AI则是基于数据和业务的基础之上再次进行扩展和更新的。业务业务,数据AI是什么?业务:是公司业务的集中化管理平台,通过集成各个业务系统和提供标准化的业务模块服务,帮助公司提高业务协同能力和效率。数据:是企业数据的集中化管理平台,通过统一数据的存储、管理、分析和应用,提升数据的价值和利用率,支持业务决策和创新。AI:是企业人工智能技术和应用的集中化管理平台,通过整合各类人工智能算法、工具和平台,提供一站式的开发、测试、应用和维护智能应用等。业务,数据,AI的区别业务解决的是业务系统复杂性和运营效率低下的问题,数据解决的是数据孤立、分散、标准化和共享等数据管理问题,AI则是为满足企业的数据智能化应用、数据AI三者之间有着密切关联,都是数字化转型的基础设施,它们灵活配合,彼此支持,共同推动企业数字化升级。
大模型技术兴起下,AI难以满足异构模型与算力的统一管理需求。大模型存在启动慢、监控性能差、请求堵塞、微调自动化不足及推理运维成本高问题;管理运维安全方面,企业对多类型、多来源模型的监控运营能力部署,实现异构算力集群的统一管理、资源精细化切分与高效调度,提升系统灵活性。私有化部署方案:SophonLLMOps支持在私有化环境快速使用R1模型进行具备深度思考的服务及应用开发,利用DeepSeekR1实现知识库和工具调用,并快速部署至企业内部,加速基于大模型的企业级应用快速落地。:SophonLLMOps已实现了对内外部所有主流大模型的全面统一纳管与标准化管理可帮助企业实现AI系统的高效运行,为企业业务拓展提供了坚实的技术保障。异构算力调度:支持国内外GPU/NPU(ARM/x86)混合
行业资讯
AI数据
AI数据企业数字化转型的关键技术平台,它整合了多种AI技术和工具,提供统一的服务能力和数据支持。以下是AI数据的几个核心特点:架构设计AI数据的架构主要包含数据层、模型层、服务层和数据采集、清洗和统一存储,提供报表、数据分析和可视化能力。功能与价值:AI数据通过数据整合、数据分析、数据驱动决策、数据安全与合规、数据服务化和数据价值挖掘等多方面的目标,帮助企业实现数字化、智能化界面。关键技术:AI数据的关键技术包括人工智能、云计算和大数据。人工智能技术提升对异构数据的处理能力,实现智能预测和决策。云计算确保数据运算的即时性和高效性,提供灵活性和可扩展性。大数据技术负责转型。解决方案:AI解决方案提供了高性能算力管理、敏捷业务赋能和开放的云原生架构,以支持AI资产共享共建、AI治理运营等方面的建设。应用层四个部分。数据层负责数据的采集、清洗、标注和存储,为模型训练提供高质量的数据集。模型层涉及AI模型的构建、训练、调优和评估。服务层则提供模型部署和API接口,而应用层则是最终用户与AI能力的交互
分布式图数据库是一种用于存储、管理和查询图数据的数据库,适用于处理海量复杂数据、实现多跳关系查询和图算法计算。通过分布式存储和计算,实现对大规模图数据的高效管理和查询。分布式图数据库使用图结构存储数据,节点和边可以拥有自定义的属性,支持多种查询语言和图算法。它通常由多个节点组成,每个节点负责存储和处理一部分数据,互相协作完成任务。分布式图数据库适用于金融、社交媒体、医疗等领域的数据分析和挖掘。TranswarpStellarDB是由星环科技自主研发的一款分布式图数据库,兼容开放Cypher查询语言。它支持原生图存储结构,提供PB级别的海量图数据的存储和分析能力。同时,在易用性、安全性、运维管理以及开放性方面也有着不错的表现。TranswarpStellarDB4.0性能在多跳查询和图算法方面实现了数倍升级,并且在易用性、安全性、运维管理和开放性等方面都进行了全面升级,可以帮助企业用户更快、更高效地挖掘海量数据互联的价值。通过采用分布式集群存储的方式,TranswarpStellarDB克服了海量关联图数据存储的难题,并通过集群化存储和丰富的算法来实现低延迟的多层关系查询。已经在金融、政...
近年来,图数据库的价值逐渐得到了大家的关注。作为一家专注于图数据库研发的企业,星环科技成为了行业内备受关注的图数据库公司之一。星环科技致力于打造企业级大数据基础软件,旨在为用户提供数据的集成、存储、治理、建模、分析、挖掘和流通等全生命周期的基础软件和服务。同时,作为一家深入图计算领域多年的公司,星环科技自主研发了分布式图数据库StellarDB,StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。另外,StellarDB还具备毫秒级的点边查询能力、10+层深度链路分析能力和近40种的图分析算法,同时还可提供数据2D和3D展示能力。星环科技进一步推出的StellarDB4.0版本,在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用性、安全性、运维管理和开放性方面也全面升级。这些升级内容均有利于帮助企业用户更高效地挖掘海量数据互联价值。星环科技已经成功克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询。广泛应用于金融、政府、交通等多个行业的反洗钱、风...
图数据库相对于其他传统的数据库有很多优势,以下是几点常见的优势:灵活的数据模型:图数据库支持灵活的数据模型,可以存储复杂的实体类型和其之间的关系,如社交网络、地图路线等复杂模型。强大的关系查询能力:图数据库通过树状遍历方式遍历关系,使用广度优先搜索和深度优先搜索算法,提供更快速、更精确的关系查询和分析。高效的数据处理能力:图数据库处理大规模图数据的效率更高,能够对图数据进行快速存储、索引和查询,降低了大数据量和高并发访问时的数据处理成本和时间成本。聚焦场景:图数据库适用于需要对关系进行建模和分析的应用场景,更加专注于应用场景的需求,为用户提供更好的数据处理能力和建模分析能力。多语言支持:图数据库支持多种语言,为多类开发者和企业提供了更便利的操作性和接口。图数据库具有灵活性高、查询性能强、数据处理能力优异、聚焦场景和多语言支持等优势。这些优势使得图数据库在现代大数据场景下的应用越来越广泛化。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式...
TranswarpDataStudio(简称TDS)是星环科技自研的一站式大数据开发工具,提供数据集成、存储、治理、服务和共享等数据处理全生命周期的企业级管理能力。结合星环科技大数据基础平台TranswarpDataHub简称TDH)业界创新的多模态的大数据处理能力,能够提升企业构建数据中台、数据仓库、数据湖等系统的效率,更高效地实现数据资产化和数据业务化数据开发套件,助力企业完成数据统一化数据开发套件包含了大数据整合工具Transporter、数据库在线开发与协同工具SQLBook和任务调度软件Workflow,该套件作为星环科技大数据基础平台TranswarpDataHub的生态开发应用工具,针对数据开发场景,提供数据集成、SQL开发和任务调度的能力,帮助企业将数据归集到数据湖仓,完成数据统一化的过程。数据开发套件的三大核心优势:分布式架构设计,可支持PB级别的数据平台建设,支持日均十万级任务调度,性能可扩展;支持SQL关键词和SQL片段推荐,数据开发知识积累,智能化持续优化开发体验和开发效率;基于大数据平台计算能力提供数据转换能力,避免传统ETL工具本身的计算瓶颈。数据治理套件,...
行业资讯
图数据库技术
图数据库技术是一种应对处理网络、社交网络、金融、物流、人力资源等领域大规模图数据的数据库技术。它的核心思想是将数据以节点和边(或关系)的形式表示为图结构,并且使用图论算法来处理和分析图数据。与传统关系型数据库相比,图数据库具有以下独有的优势:高效处理复杂关系:图数据库能够更加高效和便利地处理网络关系的复杂性,而关系型数据库则需要多表关联,从而开销比较大。更加贴合业务需求:图数据库建立的业务图模型更能够贴合实际业务需求,更好的反映业务中的关系复杂性,同时也更加容易维护和解决问题。易于拓展:作为新型数据库,图数据库基于跨平台开源软件,并且基于标准语言,可以并行处理,易于拓展。更好的查询性能:图数据库采用以图形方式存储的数据,查询性能快,即使在数据量较大时,图查询语言效果也良好。更好的原型应用程序:图数据库的特性,同时也增加了更多的应用程序,这些程序在传统关系型数据库中往往比较困难。图数据库技术在社交网络分析、推荐系统、物流、金融、人工智能等领域有广泛的应用前景。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数...
图数据库是一种特殊的数据库管理系统,可以高效地存储和查询各种复杂数据间的关系。一般而言,图数据库是基于图形理论和图形模型而建立的,相比于传统的关系数据库(RDBMS),图数据库能够很好的解决复杂数据之间的连接问题,有着优越的效率和性能。图数据库可以看作一个由节点(节点表示具体的数据)和边(边表示节点之间的生物关系)组成的图,这种图称为图形数据。这些节点和边都具有特定的属性,这些属性包含了数据的详细信息,比如名称,性别,地址等内容。这种数据呈现了一个更加真实和可视的方式,具有更加完整的信息和语义,可以用于多种领域,如社交网络,交通规划,生物医学等,因此有着极其广泛的应用前景。相比于其他数据库系统,图数据库拥有以下优点:应对复杂性:图数据库可以轻松处理各种形式的复杂数据,可以通过在图形结构中表示数据之间的联系,从而实现更好的查询和可视化。相比于传统的关系型数据库,图形数据的可视化更加清晰有条理,能够更加方便的进行复杂数据的关系分析。高效性:图数据库能够高效地处理大量的数据连接操作,而且查询时不需要太多的连接,所以具有更高的查询效率。例如,在社交网络中,图数据库能够高效的搜索出用户之间的关系...
星环科技自主研发的数据安全管理平台TranswarpDefensor,基于Defensor的五大核心能力和星环科技全局数据安全策略,可以帮助企业建设以数据为中心的数据安全防护。Defensor能够帮助企业了解内部数据敏感信息的资产地图,发现潜在风险,并监控企业重要数据的合规使用;同时,也能对企业敏感数据进行分类分级,通过数据脱敏、水印等方式对数据进行事前事后的保护,防止数据泄露或能够在数据泄露后做到可以溯源追踪。五大核心能力:分类分级、数据脱敏、操作监测、操作审计、个人信息去标识第一,敏感数据识别与分类分级,帮助企业全面梳理敏感资产,并绘制分类分级资产地图。Defensor内置的分类分级标准参照,涵盖了多个行业法律法规,并与律师深度合作探讨,共同落实了大量规则;基于正则表达式、关键字内容、算法匹配、字典匹配等方式,自动扫描全局敏感数据,提供定时敏感识别扫描任务。第二,提供数据脱敏和水印等能力,让敏感数据可以脱敏后服务业务,并在发生泄露后可以追踪溯源。平台预置多种脱敏算法,开箱即用,满足不同场景,不同安全等级的脱敏要求。当敏感数据需要对外流通时,支持在数据集中嵌入水印,当数据发生泄漏后,...
AquilaInsight是星环科技推出的一款多模数据平台监控软件,为企业运维团队提供了一套统一、完整、便捷的智能化运维解决方案。通过丰富的仪表盘管理、告警与通知管理、实时和历史查询语句运行分析、计算和存储引擎的统一监控、完整的日志收集过滤与检索等功能,实现高效智能运维的目标,充分保证集群稳定高效的运作。业务痛点企业在应对业务部门的扩张以及数据融合创新时,通常会针对不同的项目场景引入不同的数据模型以及大数据产品。这些产品和模型为企业解决了海量多源异构数据的存储管理难题,但与此同时,产品服务的可靠性问题也为企业带来了挑战。服务需要持续高效、稳定、可靠的运作,对于企业运维团队来说需要做到有问题及时发现,资源不够及时扩容,出现故障迅速修复,以防止出现服务器长时间宕机、业务长时间中断、数据丢失等问题。企业如果采用了大量分布式架构的大数据组件,那么运维人员需要掌握每一款大数据产品的相关知识,极大的增加了企业的运维成本以及运维人员的学习成本。并且由于缺乏统一的运维入口,传统的查询运维难以完成指标数据的可视化,极易缺乏或遗漏关键监测指标。在数据碎片化、监控对象粒度庞大的情况下,自动化监控难以实现,无...
星环科技凭借自身在大数据、人工智能等领域多年来积累的技术优势和实践经验,能够为水电行业打造基于国产基础软件的新一代数据底座,实现海量数据实时接入及应用。在方案中,所有时序数据通过实时接口统一接入星环科技分布式时序数据库TranswarpTimelyre,关系型数据接入关系型分析引擎TranswarpInceptor关系库,非结构化数据接入对象存储平台。然后对时序数据、关系数据进行主题建模和维度建模,将建模结果直接写星环科技分布式数据库入ArgoDB中,形成DWD和DWS层。并在ArogDB中,面向应用分析,构建数据指标宽表、应用主题数据等数据集市层。这里有几个很关键的联合分析技术,一个是“序关分析”,举个例子,我们在做故障预警算法开发的过程中,需要提取故障特征,通过历史设备台账数据(一般存在关系型数据库),把所有设备的故障开始时间、故障结束时间,故障类型等拿出来,关联时序数据库找到设备故障时刻的测点值,这些值要提取出来,作为样本进行AI模型训练。另外一个是流上机器学习与流批一体,按照上面的例子,训练完模型后,需要部署在实时计算引擎上,与离线库中的档案数据表等,构建实时故障预警模型,对同...
数字经济时代,边缘计算作为行业数字转型的核心能力底座,正在快速崛起。星环科技也在边缘计算领域进行了诸多探索,研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。设备数据管理:平台支持超过20种标准的设备协议,用户只需要进行简单配置便可快速将物联网设备或视频设备接入平台,并进行设备数据实时预览和统一管理。边缘模型部署:平台支持多种框架训练的深度学习模型的上架,通...