模型推理训练的优化算法
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
模型推理训练的优化算法 更多内容

行业资讯
大模型训练和推理
大模型训练包括数据准备、预训练及可选的微调阶段,需投入大量资源及特定学习方法;大模型推理涉及输入处理、基于模型知识生成输出及采用优化策略来提高推理效率。大模型的训练和推理是深度学习中两个关键的阶段够根据验证集和测试集的数据不断优化这些添加或调整后的部分,以达到最佳性能。大模型推理输入处理接收和解析输入:推理时,模型首先接收用户输入的文本,如一个问题或一段提示内容。模型会对输入进行解析,将其转换给用户。如果是用于其他任务,如机器翻译,还可能需要根据任务要求对输出进行进一步的处理,如调整翻译后的句子结构、词序等。推理优化策略模型量化和剪枝:为了提高推理速度,减少计算资源消耗,可以对模型进行量化:大模型训练数据准备数据收集:收集海量的、多样化的文本数据。这些数据来源广泛,包括但不限于互联网文章、书籍、新闻、学术论文、社交媒体帖子等。数据清洗和预处理:对收集到的数据进行清洗,去除噪声数据,如广告、重复内容、格式错误的文本等。同时,还需要对文本进行预处理,如分词(将文本分割成单词或子词)、编码(将单词或子词转换为数字表示)等操作。预训练阶段无监督学习方法:通常采用无监督学习算法,如自回归

行业资讯
大模型推理优化
大模型推理优化是指通过一系列技术和方法,提高大模型在推理阶段的性能和效率,使其能够更快速、更高效地生成结果,同时降低对硬件资源的需求。模型量化原理:将模型的参数从高精度的数据类型转换为低精度的边缘设备。挑战:量化过程可能会导致模型精度的下降,因此需要精心设计量化策略和算法,以在压缩模型的同时尽量保持模型的性能。模型剪枝原理:去除模型中对推理结果影响较小的连接、神经元或层,从而简化模型结构知识,并且在不同的任务和数据集上具有良好的泛化能力。优化推理框架和硬件加速原理:选择高效的推理框架,并充分利用硬件的特性进行加速。优势:这些框架通过对模型的计算图进行优化、并行化处理以及与硬件的深度融合,能够显著提高模型的推理吞吐量和降低延迟。挑战:需要对不同的推理框架和硬件平台有深入的了解,以便根据具体的模型和应用场景选择最合适的组合,并进行相应的配置和优化。分布式推理原理:将大模型的推理任务分布数据类型,如从32位浮点数转换为8位整数或4位整数等,从而减少模型存储和计算所需的内存空间和计算量。优势:显著降低模型的内存占用和计算资源消耗,加速推理过程,使模型更容易部署到资源受限的设备上,如移动设备和

行业资讯
模型推理 模型训练
的差距;优化算法则负责指导参数调整的方向和幅度。训练好的模型本质上是一个包含了从输入到输出复杂映射关系的数学函数。与训练不同,模型推理是指将训练好的模型应用于新数据,产生预测或决策结果的过程。如果说等。推理效率的高低直接影响用户体验,因此工程师们会采用模型压缩、量化等技术来优化推理速度。训练与推理之间存在几个关键区别。首先,训练是计算密集型和数据密集型的,可能需要数天甚至数周时间,消耗大量计算资源。这种持续学习机制使模型能够适应不断变化的环境和数据分布。同时,随着机器学习技术的发展,一些新型算法如在线学习正在模糊训练与推理的界限,使得模型能够在推理过程中进行一定程度的自我调整。理解模型训练与模型推理模型训练在人工智能和机器学习领域,"模型训练"与"模型推理"是两个核心概念,它们构成了机器学习系统从学习到应用的全过程。理解这两个环节的区别与联系,对于把握机器学习技术的基本原理至关重要。模型训练是指通过大量数据让机器学习算法自动调整内部参数,从而获得能够解决特定问题的数学模型的过程。这个过程类似于人类的学习经验积累。训练开始时,模型通常处于"无知"状态,其参数被随机初始化。随着训练数据

行业资讯
大模型推理优化
大模型推理优化在人工智能领域,大型语言模型(LLM)已成为研究和应用的热点。这些模型在文本生成、问答系统、代码补全等任务上表现出色,但其庞大的参数量也带来了显著的推理成本。如何优化大模型的推理过程,使其在保持性能的同时更加有效,成为当前研究的重要方向。推理优化的必要性大模型的推理过程涉及大量矩阵运算和参数访问,对计算资源和内存带宽要求很高。例如1750亿参数在推理时需占用数百GB内存,单次推理可能消耗数秒甚至更长时间。这种高延迟和高成本限制了模型在实际场景中的应用,特别是在边缘设备或实时系统中。因此,推理优化不仅是技术挑战,也具有显著的经济价值。主要优化技术模型压缩是常见的优化手段。通过量化技术,将模型参数从32位浮点数转换为8位或4位整数,可大幅减少内存占用和计算量,而精度损失通常控制在可接受范围内。知识蒸馏则是训练一个小型"学生模型"来模仿大型"教师模型"的行为,保留关键知识的同时减少参数量。计算图优化通过分析模型的计算流程,消除冗余操作,融合连续层,优化内存访问模式。例如,将多个矩阵乘法合并为一个操作,可以减少中间结果的存储和传输开销。算子融合技术特别适合GPU等并行计算设备

行业资讯
大模型推理训练
大模型推理训练在人工智能领域,大模型已经成为推动技术进步的重要力量。这些拥有数十亿甚至数千亿参数的神经网络模型,展现出惊人的语言理解、生成和推理能力。而"大模型推理训练"作为这一领域的核心技术之一,正在改变我们与机器交互的方式。什么是大模型推理训练大模型推理训练是指在大型预训练语言模型基础上,通过特定方法进一步提升其逻辑推理和问题解决能力的训练过程。与传统的监督学习不同,这种训练更加注重模型对复杂信息的理解和分析能力,而不仅仅是模式识别。这类训练通常分为两个阶段:首先是通过海量数据进行预训练,使模型掌握语言的基本规律和世界知识;然后通过专门的推理训练方法,如思维链提示、指令微调等,提高模型提高了模型在数学和逻辑问题上的表现。指令微调则使用大量人工标注的高质量问答对,对预训练模型进行精细调整。这些数据通常包含详细的推理步骤和严谨的解答过程,帮助模型学习人类专家的思考方式。另一种方法是自洽性训练,通过让模型生成多个可能答案,然后选择一致和合理的解决方案,减少模型输出中的矛盾和不合理结论。这种方法特别适合开放领域的复杂问题。应用场景经过良好推理训练的大模型,在多个领域展现出实用价值。在教

行业资讯
训练模型推理模型
遍历训练数据,通过优化算法(如梯度下降)不断调整模型参数,逐步减少预测结果与真实值之间的差异。训练过程通常需要强大的计算资源,尤其是处理大规模数据集时。现代深度学习模型可能包含数百万甚至数十亿个参数在不忘记旧知识的前提下学习新信息。这些进步正在改变传统的人工智能开发范式。理解训练模型和推理模型的区别与联系,不仅有助于我们把握人工智能系统的工作原理,也能为实际应用中的技术选型和优化提供基础框架。从数据准备到模型部署,这两个环节共同构成了机器学习项目生命周期的核心支柱。训练模型与推理模型:人工智能的两大核心环节在人工智能领域,训练模型和推理模型构成了机器学习系统的两大核心环节。这两个过程虽然紧密相关,但在目的、方法和应用场景上有着本质区别。理解它们的差异与联系,对于掌握人工智能技术的基本原理至关重要。训练模型:从数据中学习规律训练模型是指利用大量数据来调整模型内部参数,使其能够捕捉数据中潜在规律的过程。这个过程类似于人类通过学习积累经验。在训练阶段,算法会反复的是,训练过程是一个"试错"过程。研究人员需要不断调整超参数,监控损失函数和评估指标的变化,防止模型出现过拟合或欠拟合现象。交叉验证等技术常被用于评估模型的泛化能力。推理模型:将知识应用于实践推理模型

行业资讯
大模型推理和训练
。接着是参数更新,使用优化算法根据误差信号调整模型参数。这个过程需要反复迭代,直到模型性能达到预期水平。与大模型训练不同,推理是指使用已经训练好的模型对新数据进行预测的过程。推理过程不需要调整模型参数模型的应用离不开两个关键环节:训练和推理。本文将简要介绍这两个过程的基本原理和特点。大模型的训练是指通过大量数据来调整模型参数,使其能够学习到数据中的规律和特征。训练过程通常需要三个要素:数据、算法和预测所需的时间,吞吐量指单位时间内能处理的请求数量。为了提高推理效率,研究人员开发了多种优化技术,如模型量化、知识蒸馏和剪枝等。训练和推理虽然不同,但密切相关。训练决定了模型的能力上限,而推理决定了模型大模型推理和训练近年来,人工智能领域取得了突飞猛进的发展,其中大模型的出现尤为引人注目。大模型是指参数量巨大、计算复杂度高的深度学习模型,它们在自然语言处理、图像识别、语音合成等任务上表现出色。大计算资源。首先,训练数据必须足够丰富和多样,这样才能让模型学习到广泛的知识。例如,训练一个语言模型可能需要数以亿计的文本数据。其次,算法决定了模型如何从数据中学习。目前最常用的是基于

行业资讯
大模型推理技术
推理模型推理指的是将训练好的神经网络模型应用于新数据,产生预测结果的过程。与模型训练不同,推理阶段不需要调整模型参数,而是利用已有知识进行决策判断。大模型通常指参数量超过十亿甚至千亿级别的深度学习模型在保持可接受准确度的前提下,尽可能提高推理速度和降低计算资源需求。在硬件层面,图形处理器(GPU)和张量处理单元(TPU)等专用加速芯片大幅提高了矩阵运算效率。软件优化方面,模型压缩技术如量化、剪枝和知识蒸馏能够有效减少模型体积和计算量。推理优化方法动态批处理是一种常见优化技术,它将多个推理请求合并处理,充分利用硬件并行计算能力。缓存机制可以存储频繁使用的中间结果,避免重复计算。此外,模型分割技术将大模型拆分为多个部分,分布在不同的计算设备上协同工作。注意力机制优化对大模型推理尤为重要。通过限制注意力计算范围或采用稀疏注意力模式,可显著降低Transformer类模型的计算复杂度。混合精度计算则在自动设计适合特定硬件平台的模型结构。联邦推理则允许多方协作完成推理任务而不共享原始数据。随着算法创新和硬件进步的协同作用,大模型推理技术将持续突破现有局限,为人工智能应用落地提供坚实支撑,让大规模智能服务真正走入日常生活。

行业资讯
模型推理平台
模型推理平台在人工智能技术飞速发展的今天,模型推理平台作为连接训练好的AI模型与实际应用的桥梁,正发挥着越来越重要的作用。这类平台为各类AI模型提供了运行环境,使得训练好的模型能够有效、稳定地处理实际任务,将人工智能从实验室带入现实世界。模型推理平台的核心功能是加载和执行已经训练好的机器学习模型。与模型训练阶段不同,推理阶段不再需要调整模型参数,而是专注于使用固定模型对新输入数据进行预测或分类服务,例如模型加载服务、预处理服务、推理引擎和后处理服务等。这种架构带来了良好的扩展性和灵活性,平台可以根据负载动态调整资源分配,在保证服务质量的同时提高资源利用率。性能优化是模型推理平台面临的主要挑战之一。在实际应用中,平台需要处理高并发请求,同时满足严格的延迟要求。为此,先进的推理平台采用了多种优化技术,包括模型量化(减少模型大小和计算量)、图优化(简化计算图结构)、批处理(合并多个请求一起处理)等。这些技术可以显著提高推理速度,降低资源消耗。模型推理平台的另一个重要特性是支持多种框架和硬件。不同的AI模型可能使用不同的训练框架。优秀的推理平台能够兼容这些主流框架,并提供统一的接口。同时
猜你喜欢

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...