构建向量数据库技术

星环分布式向量数据库
Transwarp Hippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题。Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性检索等场景。

构建向量数据库技术 更多内容

中国首个《向量数据库技术要求》标准正式实施,为向量数据库的研发、测试和选型提供了重要的参考依据,推动中国人工智能产业的持续发展。在人工智能时代,向量数据作为基础数据形式,记录了事物的多个维度特征。向量数据库借助向量索引等技术,能够通过模糊匹配进行近似查找,从而以快速度找到符合需求的数据,极大地提高了人工智能系统的数据检索和处理效率。今年以来,随着人工智能大模型的爆发式发展,行业对向量数据库的需求也进一步增加,使得向量数据库的关注度持续上升。然而,长期以来,向量数据库技术架构、查询语言、使用成本等方面缺乏行业共识,亟待解决一些关键问题。为了推动行业形成对向量数据库基础能力的基本共识,推动向量数据库技术产业发展和规模化应用,中国信通院云计算与大数据研究所依托中国通信标准化协会大数据技术标准推进委员会和信通院数据库应用创新实验室,联合50多家企业专家共同编制了《向量数据库技术要求》。该标准包含了基本功能、运维管理、安全性、兼容性、扩展性、高可用性以及工具生态7大能力域共47个测试项,被分为27个必选项和20个可选项。这将为向量数据库的研发、测试和选型提供重要的参考依据。这一标准的实施将进一步推动中国人工智能产业的高质量发展,促进向量数据库技术的进步和应用普及。
大模型知识使用向量数据库还是图数据库?在构建大模型知识时,选择合适的数据库技术尤为重要。当前主要有两种数据库类型备受关注:向量数据库和图数据库。这两种技术各有特点,适用于不同的应用场景。向量。无论选择哪种方案,都需要根据具体的使用场景、数据特点和性能需求做出决策。理解这两种技术的本质差异,是构建有效大模型知识的开始。随着技术的不断发展,数据库与大模型的结合方式也将持续演进,为人工智能应用提供更强大的知识处理能力。数据库是专门为处理高维向量数据而设计的。它能够有效存储和检索以向量形式表示的数据,这种表示方式正是现代大模型处理信息的核心方法。当大模型将文本、图像或其他类型的数据转换为嵌入向量后,向量数据库可以快速找到语义上相似的条目。这种能力使得向量数据库特别适合用于大模型的记忆扩展、上下文检索等任务。它的优势在于相似性搜索的快速性,即使面对数十亿级别的向量数据,也能保持较快的查询速度。图数据库则以不同的方式组织应用,图数据库能够提供更丰富的语义信息。它擅长处理多跳查询,即通过多个关系步骤连接不同实体的查询需求。从性能角度比较,向量数据库在相似性搜索方面表现优异,查询时间通常与数据量呈次线性关系。而图数据库
开源向量数据库是一种基于开放源代码模型构建数据库系统,用于存储、管理和高效查询向量数据。它采用特定的结构和索引来支持向量的高效查询和相似度匹配。开源向量数据库通常用于处理大量的向量数据集,如图作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,很好地满足了企业针对海量向量数据的高实时性检索等场景。像、视频、声音、文本和生物信息等。它可以支持高效的相似度查询和大规模数据集搜索,同时也支持常规的数据添加、删除和更新操作。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo
解锁向量数据库:开启数据存储与检索新时代向量数据库:AI时代的新宠在当今这个人工智能飞速发展的时代,AI技术正以前所未有的速度融入到我们生活的方方面面。从智能语音助手到图像识别系统,从推荐算法到智能客服,AI的身影无处不在。而在这繁荣发展的背后,向量数据库作为关键的技术支撑,正悄然崛起,成为AI领域的新宠。以图片搜索为例,在向量数据库出现之前,我们要在海量的图片中找到相似的图片,是一件非常困难的事情。传统的基于关键词的搜索方式,无法真正理解图片的内容和语义。而向量数据库则可以通过将图片转化为向量,利用向量之间的相似度计算,快速准确地找到与之相似的图片。向量数据库是什么定义与概念向量数据库,简单来说,是一种专门用于存储和处理向量数据数据库。在深入探讨之前,我们先来理解一下什么是向量。在数学中,向量是具有大小和方向的量。而在计算机科学领域,向量被用来表示各种数据的特征。比如,一张图片可以被转化为一个向量,这个向量中的每个维度都代表了图片的某个特征,如颜色、纹理、形状等;一段文本也可以被表示为向量向量的各个维度反映了文本的语义、关键词等信息。向量数据库的核心功能就是将这些向量数据进行
统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备语义的查询分析,让查询更满足人性化的需求。语音/视频/图像检索星环分布式向量数据库Hippo将多维向量特征构建成高效的向量索引,实现数据的相似性检索,可覆盖人脸识别、语音识别、视频指纹等多类AI场景星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行弹性扩缩容星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储与直接利用各类算法lib不同,星环Hippo存储和计算都可以充分利用分布式特性,按需灵活扩展,满足大规模集群部署需求;通过Raft算法确保数据的强一致性;并提供故障迁移,数据修复等数据保障能力。深度优化,高性能数据检索星环分布式向量数据库Hippo支持多进
后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量。云原生技术,支持弹性扩缩容:星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储:与直接利用各类算法lib不同,星环环分布式向量数据库Hippo提供数据动态更新的能力,对于实时插入/更新的数据,可以快速完成数据的加载和索引的构建,解决向量数据T+1的传统处理逻辑,满足实时动态变化数据向量检索分析。多样化接口,丰富自然语言处理能力,可以更好地支持基于语义的查询分析,让查询更满足人性化的需求。语音/视频/图像检索:星环分布式向量数据库Hippo将多维向量特征构建成高效的向量索引,实现数据的相似性检索,可覆盖人脸识别向量数据库是专门用来存储和查询向量数据库向量数据库基于向量相似性搜索,可以处理更多非结构化数据,比如图像和音频。在机器学习和深度学习中,数据通常以向量形式表示,因此向量数据库被广泛应用于这些领域
行业资讯
向量数据库
向量数据被存储在数据库中,并按照一定的数据模型进行组织。通常情况下,向量数据可以通过向量技术将其转换为数值向量、文本向量或图像向量等形式。索引构建:针对向量数据数据库构建索引结构,以加快相似性相似性搜索功能,即快速找到与查询向量最相似的若干个向量。这在推荐系统、图像识别、自然语言处理等领域具有广泛的应用。工作原理向量数据库的工作原理主要包括数据存储、索引构建和相似性搜索三个过程:数据存储结构进行快速搜索,并返回与查询向量最相似的数据结果。相似性搜索的过程通常涉及到距离计算和相似度评估,数据库会利用预先构建的索引结构来加速这一过程,从而提供快速准确的搜索结果。应用场景向量数据库在许多领域向量数据库向量数据库是一种专门用于存储和查询高维向量数据数据库系统。它通过特定的索引结构和优化算法,使得高维向量的存储、管理和检索变得更加高效。向量数据库不仅支持大规模向量数据的存储,还提供高效的搜索的速度。常见的索引结构包括KD树、球树和LSH(局部敏感哈希)等。这些索引结构能够将向量数据组织成树状或哈希表的形式,从而提高相似性搜索的效率。相似性搜索:当用户发起相似性查询时,数据库会通过索引
一文读懂向量数据库:原理、索引技术与选型向量数据库的基本原理向量数据库是一种专门用于存储、检索和分析向量数据数据库系统。与传统数据库处理结构化数据不同,向量数据库的核心能力在于快速处理高维向量数据。这种数据库通过数学方法计算向量之间的相似度,使得"相似性搜索"成为可能。向量数据库的工作原理可以概括为三个步骤:向量化、索引构建和相似性搜索。首先,原始数据(如文本、图像、音频等)通过嵌入模型转换为向量表示,这个过程称为向量化。然后,数据库对这些向量建立专门的索引结构,以加速后续查询。当用户提交查询时,系统将查询内容同样转化为向量,并通过索引快速找到相似的存储向量。核心索引技术解析向量数据库的。基于量化的索引通过压缩技术减少存储空间和计算开销。它将原始向量空间划分为多个子空间,并用少量代表性向量(质心)来近似表示原始向量。这种方法特别适合超大规模向量数据集。选型考量因素选择适合的向量数据库性能很大程度上取决于其采用的索引技术。目前主流的索引方法可以分为几大类:基于树的索引是开始是应用于向量检索的技术之一,通过构建树形结构将向量空间递归划分。这类方法在小规模数据上表现良好,但随着维度增加
利用向量数据库和图数据库,可以构建特定领域的大模型应用。在大模型应用开发软件栈中,知识图谱、向量数据库、模型仓库和图数据库构成的知识语义层,与模型运行层、大语言模型、提示工程层、应用前端集成层协同图谱作为大语言模型提示即可发起模型微调,以较低代价就可获得行业的专属大语言模型问答应用。而向量数据库、图数据库与大语言模型结合,可以构建业务域知识图谱和业务系统的应用服务,进一步提高人机交互的效率,帮助用户创建大模型应用,让每个人都拥有自己的个性化AI助理。其中,向量数据库可用于应用的文本检索,让查询更满足人性化的需求;可以实现语音、图像、视频检索,覆盖如人脸识别、语音识别、视频指纹等各类AI场景;实现个性化推荐,做到千人千面的个性化推荐效果。而图数据库和知识图谱联合,与大模型可视化端到端构建工具一起,提供了知识抽取融合、知识建模、知识图谱生成存储、基于大模型的知识问答等闭环功能。客户以知识,提供更灵活的组合业务服务,激发出更多更深入的业务场景AI应用。相较于通用大模型,结合向量数据库、图数据库与知识图谱所存储的具体行业知识,领域大模型更精通特定行业的知识,具备高效的语料匹配能力和知识推理能力,能够有效回答用户的提问。
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...