机器模型大模型

模型和小模型是指在机器学习和深度学习中模型的规模和复杂度的不同。模型通常指参数数量较多、层级较深、具有较高的复杂度的模型。这些模型通常需要大量的计算资源和存储空间来进行训练和推断,并且在某些任务中能够取得更好的性能和效果。模型拥有更多的自由度和表达能力,能够更好地拟合、捕捉复杂的数据模式和规律。小模型则对于模型而言,参数数量较少、层级较浅、复杂度较低。这些模型通常需要较少的计算资源和存储空间,可以在资源有限的环境下进行训练和推断。尽管小模型可能无法达到模型的性能水平,但它们通常具有更快的推理速度和更低的存储要。小模型适用于资源受限的设备和场景,并可以在较短的时间内迭代和训练。模型和小模型的选择取决于具体的应用场景和需求。如果需要更高的性能和精度且有足够的计算资源和存储空间,那么模型可能是更好的选择。如果资源有限,但仍需要一定的功能和性能,那么可以使用小模型来满足需求。在现实应用中,也可以根据实际情况进行灵活的选择,例如使用模型进行预训练,然后通过微调和模型压缩等技术将其转化为小模型模型和小模型都有其适用的场景和优势,选择合适的模型有助于提高效率和性能。

机器模型大模型 更多内容

行业资讯
模型平台
模型平台是指基于规模参数的机器学习模型构建的平台,这些平台通常提供模型训练、部署、推理等服务,支持多种应用场景。以下是对模型平台的详细阐述:定义模型平台是基于具有规模参数和复杂计算结构的机器学习模型构建的平台。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型平台的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。特点巨大的规模:模型包含,能够在各种任务上表现出色。多任务学习:模型通常会一起学习多种不同的任务,如自然语言处理中的机器翻译、文本摘要、问答系统等。数据训练:模型需要海量的数据来训练,通常在TB以上甚至PB级别的数据集数十亿个参数,模型小可以达到数百GB甚至更大。涌现能力:当模型的训练数据突破一定规模时,模型会涌现出之前小模型所没有的复杂能力和特性。更好的性能和泛化能力:模型通常具有更强大的学习能力和泛化能力。强大的计算资源:训练模型通常需要数百甚至上千个GPU,以及大量的时间。应用场景自然语言处理:语言模型(LLM)是模型的子分类,专门通过处理大量文本数据来理解和生成人类语言,执行各种自然语言处理任务
什么是模型模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,模型通常是指具有数百万到数十亿参数的神经网络模型。这些模型需要大量的计算资源和存储空间来训练和存储,并且往往需要进行分布式计算和特殊的硬件加速技术。模型的设计和训练旨在提供更强大、更准确的模型性能,以应对更复杂、更庞大的数据集或任务。模型通常能够学习到更细微的模式和规律,具有更强的泛化能力和表达能力。然而,模型也面临一些挑战。首先是资源消耗问题,模型需要大量的计算资源、存储空间和能源来进行训练和推理,对计算设备的要求较高。其次是训练时间较长,由于模型参数规模的增大,模型的训练过程会更加耗时。除此之外,模型对数据集的需求也较高,如果训练数据不充足或不平衡,可能会导致模型过拟合或性能下降。星环科技提供模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出
行业资讯
模型训练
模型训练是一种机器学习的方法,通过训练规模的模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算的方法来加速训练。同时,为了处理规模的数据和模型,需要使用更高效的算法和优化技术效地管理和调度这些资源。随着深度学习和数据技术的发展,模型训练已经成为机器学习领域的重要研究方向之一。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新,例如数据并行、模型并行、流水线并行和张量并行等。此外,模型训练还需要考虑存储和网络通信的问题,例如如何有效地存储和传输规模的数据和模型。在训练过程中,需要使用更多的计算资源和存储资源,因此需要更高场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二,帮助客户将
人工智能模型是指在机器学习和人工智能领域中,具有规模参数和复杂计算结构的模型。这些模型基于深度神经网络构建,参数量通常达到数十亿甚至数千亿个。它们能够处理规模数据,执行复杂的任务,如自然语言处理、计算机视觉和语音识别等。模型的发展历程显示了其在处理复杂问题上的优势。随着数据量的增加和模型复杂度的提高,传统的机器学习方法逐渐显得力不从心。而模型凭借其强大的计算能力和智能决策能力,在各个领域取得了显著成果。以星环科技的无涯为例,这是一个拥有数十亿参数的规模语言模型。通过在海量文本数据上进行无监督学习,无涯能够理解和生成人类语言,实现多种自然语言处理任务,包括但不限于文本生成、问答和翻译。星环科技无涯·问知InfinityIntelligence,是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。
模型语言模型是人工智能领域中两个重要的概念,各自有不同的特点和应用场景。模型:通常指的是具有规模参数和复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个处理规模文本数据。语言模型机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。语言模型的特点是规模庞大,包含数十参数。模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。语言模型:(LargeLanguageModels,简称LLMs)是模型的一个子集,专注于处理自然语言,能够理解、生成和亿的参数,帮助它们学习语言数据中的复杂模式。模型是一个更广泛的概念,包括了语言模型在内的多种类型的模型,而语言模型则是专门针对自然语言处理任务的模型模型可以应用于多种不同的领域,而语言模型主要应用于自然语言相关的任务。
金融模型,也被称为金融机器学习模型或金融人工智能模型,利用数据和机器学习技术进行金领域的预测、风险管理和决策支持等任务的模型。随着金融行业的数字化和数据爆炸式增长,金融模型的应用越来越广泛。金融模型的应用主要包括以下几个方面:风险管理:金融模型可以通过分析历史数据和实时数据,对金融市场中的风险进行预测和识别。比如,通过对过去的金融危机事件进行分析,可以利用模型预测未来金融危机的可能性,帮助金融机构制定相应的风险管理策略。另外,金融模型还可以在交易中实时监测市场风险,并及时发出风险警报。投资决策:金融模型可以通过对历史数据和市场数据的分析,生成投资决策建议。模型可以识别出市场的组合。金融产品创新:金融模型可以利用大量的数据进行金融产品的创新和优化。模型可以通过对市场需求和客户行为的分析,提供创新的金融产品设计。比如,利用深度学习模型和自然语言处理技术,可以对客户的文本数据进行情感分析,帮助金融机构设计出满足客户需求的个性化产品。反欺诈和合规风控:金融模型可以通过对大量的历史交易数据进行分析,识别出潜在的欺诈行为和违规交易。模型可以建立起交易模式的基准,实时监测和识别
行业资讯
部署模型
部署模型是指将经过训练的大型机器学习模型准备好,使其能够在实际应用环境中运行的过程,以下是一些重要的步骤和考虑因素:模型选择与优化:在部署模型前,需要选择适合的预训练模型,并进行微调以提高模型的针对性和表现力。可以采用模型压缩、剪枝等方法减小模型大小和计算复杂度,提高推理速度。硬件设施与资源配置:模型的训练和推理需要大量的计算资源,因此配置高性能硬件设施是关键。应选择具有高计算能力、内存和快速存储设备的服务器,搭建分布式计算集群,以提高训练和推理效率。数据预处理与增强:数据预处理与增强是模型部署的重要环节。通过对数据进行清洗、标注、扩充等操作,提高数据的质量和多样性,有助于提高模型:在模型生产部署过程中,需要对模型进行评估与验证,以确保模型的性能和质量。可采用交叉验证、泛化能力评估等方法,对模型进行全方位的评估,以便及时发现和解决问题。安全与隐私保护:模型的训练和推理,应定期监控模型的性能,及时调整和优化模型模型推理优化:在模型生产部署中,模型推理优化可提高模型的响应速度和吞吐量。可采用矢量化和并行化等技术,加速模型的推理过程;同时,可通过压缩模型输出,降低
行业资讯
模型管理
模型管理的定义模型管理是指对规模机器学习模型全生命周期的管理,涵盖模型的训练、存储、部署、监控、评估、优化以及安全管理等各个环节。其目的是帮助企业或研究机构更高效地开发、管理和应用模型,充分发挥模型的价值,提升业务效率和创新能力。模型管理的核心功能模型训练管理:协助数据准备与预处理工作,支持配置训练参数,并监控训练过程中的指标。模型存储与版本控制:安全存储模型,记录不同版本及其变更操作权限,对模型数据进行加密处理。模型管理的应用场景医疗保健:用于医学影像分析、疾病诊断预测、药物研发等。金融领域:进行风险评估、投资决策、客户服务等。教育行业:实现个性化学习、智能辅导、教育资源推荐等。制造业:应用于产品质量检测、故障预测、生产过程优化等。政府与公共服务:在政务服务、城市管理、公共政策制定等方面发挥作用。模型管理的发展趋势智能化管理:平台更加智能化,能自动分析模型训练和运行历史,便于回溯和对比。模型部署与集成:将模型部署到不同环境,并与各类应用系统集成。模型监控与评估:实时监控模型性能指标,定期用新数据进行评估,及时发现并解决问题。安全与权限管理:设置用户权限,限制访问和
行业资讯
LLM模型
LLM模型是指基于大量数据集和复法构建的机器学习模型。这种模型通常需要使用多个参数和变量,以便追踪和分析各个数据点或输入。LLM模型可以用于各种任务,如自然语言处理、图像识别、语音识别和推荐系统模型都需要经验丰富的机器学习专家和领域专家的合作。LLM模型作为机器学习技术的前沿应用,已经在各种行业和领域中拥有广泛的应用。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具等。在实际应用中,LLM模型需要高度优化的软件架构和处理能力,以处理大量数据和实现快速训练和推理。在构建LLM模型时,需要从数据的特征工程和预处理开始,并使用度学习算法进行模型的训练和优化。对于非常的数据集,还需要使用分布式计算进行训练,并采用高效的数据并行算法实现模型的分布式推理。由于LLM模型的规模和复杂性,需要更多的注意和测试,以确保模型的准确性和效率。对于任何一项任务,构建并调整平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...