大语言模型开发费用

星环模型运营平台
并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通

大语言模型开发费用 更多内容

作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏
作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏
育部发布的职业技能等级证书考核成本上限的基础上,结合区域实际,对数据平台管理与开发职业技能等级证书的考核费用进行了核算。在征询相关试点院校意见的基础上,提交专家开展专项论证,经上海市职业院校1+X证书专委会审核公示并报市教委相关职能处室备案,现将数据平台管理与开发职业技能等级证书考核费用标准(本价格仅适用于上海市)公告并发布。证书名称:数据平台管理与开发职业技能等级证书。初级证书考核费用标准:350元;中级证书考核费用标准:350元;高级证书考核费用标准:350元。星环信息科技(上海)股份有限公司2022年12月05日
作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏
作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏
作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏
作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏
育部发布的职业技能等级证书考核成本上限的基础上,结合区域实际,对数据平台管理与开发职业技能等级证书的考核费用进行了核算。在征询相关试点院校意见的基础上,提交专家开展专项论证,经上海市职业院校1+X证书专委会审核公示并报市教委相关职能处室备案,现将数据平台管理与开发职业技能等级证书考核费用标准(本价格仅适用于上海市)公告并发布。证书名称:数据平台管理与开发职业技能等级证书。初级证书考核费用标准:350元;中级证书考核费用标准:350元;高级证书考核费用标准:350元。星环信息科技(上海)股份有限公司2022年12月05日
作诗、小说写作和对话机器人等。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六统一,即统一纳管语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...