aigc和大语言模型区别

AIGC模型是一种基于深度学习技术的自然语言处理模型AIGC模型使用规模的语料库进行训练,可以自动从大量的文本数据中学习语言的语法、语义上下文信息。AIGC模型采用了多层的神经网络结构,通过反向传播算法进行训练,可以用于多种自然语言处理任务,如文本分类、情感分析、命名实体识别等。AIGC模型是一种非常强大的自然语言处理工具,可以广泛应用于自然语言处理、自然语言生成、智能客服、智能是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及演绎推理自然语言,就能利用TranswarpSoLar模型获取所需的数据分析、展示报告,轻松地应对各种复杂的数据分析挑战,并快速获得有价值的数据洞察,为企业的业务增长提供原动力。推荐等多个领域。但是,由于该模型需要大量的计算资源数据资源进行训练,因此其训练部署成本较高,需要专业的技术团队支持。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型

aigc和大语言模型区别 更多内容

行业资讯
AIGC模型
的算法架构,可以在短时间内生成大量高质量的内容,提高生成效率。AIGC模型应用场景AIGC模型在多个领域都有广泛的应用场景,包括但不限于:媒体与娱乐:自动生成新闻报道、文章摘要、诗歌、小说等文本AIGC(ArtificialIntelligenceGeneratedContent)模型是指利用人工智能技术自动生成内容的大型模型,这些内容可以是文本、图片、音频、视频甚至3D模型等多种形式。AIGC模型是基于人工智能技术,通过在规模数据集上训练得到的模型。它们具有强大的生成能力,可以根据用户的指令或需求,自动生成各种形式的内容。这些模型的特点包括:多模态生成:AIGC模型不仅能够生成文本内容,还能生成图片、音频、视频等多种形式的内容,实现跨模态的生成。高度定制化:用户可以根据自己的需求,对AIGC模型进行定制化训练,使其生成更符合自己要求的内容。高效性:AIGC模型采用先进效率质量。教育与培训:生成个性化的学习材料、模拟试题、教学视频等,为学生提供更加便捷、高效的学习体验。商业应用:在电商、广告等领域,生成虚拟主播、三维商品构建、服饰在线试穿等功能,提升用户体验购物效率。
日前,科技创新和产业研究综合服务平台亿欧TE发布《2023企业AIGC商业落地应用研究报告》。星环科技凭借在模型领域的深耕布局技术实力,成功入选其AIGC商业落地产业图谱2.0“行业大模型模型SoLar“求索”两领域模型。其中,无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解生成能力,支持股票、债券、基金90%的企业开始了数字化转型的设计规划,这意味着数字资产、数据驱动、业务数字原生程度大幅加深,AIGC可成活的土壤越牢固。作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建的一系列工具,以及在擅长的领域研发领域基础模型,助力企业抓住模型时代的新机遇。为了帮助企业用户基于模型构建应用,星环科技推出了模型持续提升持续开发工具SophonLLMOps,为用户打通从数据接入开发、提示工程、模型微调、模型上架部署到模型应用编排业务效果对齐的全链路流程,从而实现针对模型的数据分析的持续提升。同时星环科技还推出了星环无涯金融模型Infinity、数据分析
模型语言模型是人工智能领域中两个重要的概念,各自有不同的特点应用场景。模型:通常指的是具有规模参数复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型的设计目的是为了提高模型的表达能力预测性能,能够处理更加复杂的任务数据。模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别推荐系统等。模型通过训练海量数据来学习复杂的模式特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。语言模型:(LargeLanguageModels,简称LLMs)是模型的一个子集,专注于处理自然语言,能够理解、生成处理规模文本数据。语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境语用等方面。语言模型的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。模型是一个更广泛的概念,包括了语言模型在内的多种类型的模型,而语言模型则是专门针对自然语言处理任务的模型模型可以应用于多种不同的领域,而语言模型主要应用于自然语言相关的任务。
模型模型的主要区别在于其规模、复杂度性能方面。规模:模型的参数数量大小通常比大模型要少,其层数也较浅。模型通常需要更多的参数,更深的层数,具有更高的复杂度,以获得更好的精度效果。复杂度:小模型的结构较简单,可以处理相对简单的任务,而模型的结构比较复杂,可以用于规模复杂的数据集任务。训练推理时间:小模型的训练推理时间通常较短,因为小模型的参数量少、层数浅,可以更快地完成计算。相反,模型需要更多的计算资源时间来训练推理。精度效果:模型通常可以获得更高的精度效果,因为它们具有更多的参数自由度,够更准确地拟合数据。但是,小模型也可以获得很好的精度效果,尤其在数据资源受限的情况下。可扩展性:小模型通常更易于扩展部署,因为它们需要的计算资源存储空间少,可以在资源有限的环境中运行。相反,模型需要更多的计算资源存储空间,部署时需要更多的硬件上下文环境。小模型模型都有对应的应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单的任务。模型适用于处理规模复杂的任务,需要更高的精度效果。在实际应用中,根据具体的需求和资源限制选择合适的模型
近日,创业邦发布了“2023值得关注的AIGC公司”榜单,星环科技凭借在模型领域的深耕布局技术实力获评“2023值得关注的AIGC公司”基础层公司。此次结果由创业邦研究中心根据行业影响力、技术一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及演绎推理,以及自然语言,就能利用TranswarpSoLar模型获取所需的数据分析、展示报告,轻松地应对各种复杂的数据分析挑战,并快速获得有价值的数据洞察,为企业的业务增长提供原动力。成熟度、应用场景创新性等四个关键维度评选。模型时代的到来,给软件开发行业带来了巨大的变革,作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建的一系列工具,以及在擅长的领域研发部署到应用编排业务效果对齐的全链路流程,结合自研向量数据库Hippo分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域
全景图谱”、分析主流参与厂商类型与格局策略、各类型厂商发展路径能力要求变化等,为市场辨析产业发展价值与空间。星环科技凭借在模型领域的深耕布局技术实力,成功入选其2023年中国AIGC产业图谱金融板块咨询预测,2023年中国AIGC产业规模约为143亿元,随后进入模型生态培育期,持续打造与完善底层算力基建、模型商店平台等新型基础设施,以此孕育成熟技术与产品形态的对外输出。作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建的一系列工具,以及在擅长的领域研发领域基础模型,助力企业抓住模型时代的新机遇。为了帮助企业用户基于模型构建应用,星环科技推出了模型持续提升持续开发工具SophonLLMOps,为用户打通从数据接入开发、提示工程、模型微调、模型上架部署到模型应用编排业务效果对齐的全链路流程,从而实现针对模型的数据分析的持续提升。同时星环科技还推出了星环无涯金融模型Infinity、数据分析模型SoLar“求索”两领域模型。其中,无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多
行业资讯
语言模型
语言模型(LargeLanguageModel,简称LLM)是然语言处理领域的一种重要技术,语言模型可以为人工智能提供更为精准自然的语言处理能力。LLM的核心思想是利用机器学习算法学习规模语料库中的语言模型,并通过对学到的模型进行概率推断来构建对应的文本生成模型语言模型有助于提高机器的语言理解生成能力。通常来说,人类的语言表达理解非常灵活多样化。我们可以使用不同的语言风格、词汇语料库,可以在高效的情况下生成基于人类语言的文本,从而提高机器的语言理解能力。语言模型可以用于各种语言处理任务。由于LLM可以生成自然而然的文本,因此它可以用于各种语言处理任务,如问答系统、文本生态伙伴共同打造国产化数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解生成能力复杂的市场环境业务需求,持续促进整体行业的降本增效与科技创新。求索具备数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力
语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征应用场景。语言模型训练技术工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构超参数设置。常用的模型结构包括循环神经网络变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏单元数、学习率等,以取得佳的性能效果。语言模型训练在自然语言处理人工智能领域有着广泛的应用。例如,可以用于机器翻译、文本摘要、对话生成智能问答等任务。此外,语言模的训练还可以用于生成文本,如自动作诗、小说写作和对话机器人等。模型持续开发训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发训练工具
识别过时内容并提示更新。这些应用大大减轻了人工处理负担,提高了知识库的时效性完整性。特别值得一提的是智能问答功能。通过训练企业专属的语言模型,员工可以用自然语言提问,系统直接给出精准回答,而非简单的。AIGC技术可以自动化完成大量知识处理工作。在知识采集阶段,智能爬虫能够自动抓取识别有价值的内部文档;在知识整理环节,自然语言处理技术可以自动提取关键词、生成摘要和建立关联;知识更新时,AI能够。首先要明确应用场景预期效果,避免为技术而技术。数据准备是基础,需要整理高质量的企业专属语料库,用于模型训练优化。模型选择上,可以考虑通用模型微调、行业模型适配或自主训练等多种路径,平衡效果与成本企业内部知识库与AIGC技术人工智能生成内容(AIGC)技术为企业内部知识库带来了革命性的变革。通过融合AIGC能力,知识库从被动的信息存储系统升级为智能的知识服务平台,显著提升了知识管理效率质量文档列表。这种交互方式极大降低了知识获取门槛,尤其有利于新员工快速掌握业务知识。AI还能根据用户画像行为数据,主动推荐相关知识,实现"知识找人"的转变。在企业知识库中引入AIGC技术需要周密的规划
行业资讯
边缘计算平台
Sophon是星环科技推出的解决多模态数据集成和治理过程中的边缘化、智能化的云端~边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云~边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。智能制造方面,星环科技联合行业专家和合作伙伴,形成“平台、经验、应用”三轮驱动的服务模式,为化工、钢铁、冶金、设备制造、风电、光伏、发电等多个领域用户,提供包括数字孪生、仪表数据管理、实...
行业资讯
隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种开箱即用的工具,方便用户在隐私场景下进行数据处理、分析、特征工程等工作,并快速建立AI模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。星环科技基于隐私计算的数据流通产品支持多方AI协作,可以提供端到端的数据安全防护、隐私保护与隐私计算技术;提供基于硬件安全防护的可信计算提供卓越的联合建模能力,保障数据可用不可见;提供基于零信任架构和TEE技术,保证企业数据的安全和合规使用的能力。支持隐私查询、隐私求交、匿踪查询、横纵向学习等多种多个参与方的隐私计算场景;内置联邦风控、联邦反欺诈、联邦推荐等通用模板,帮助企业迅速借助数据流通建立个性化业务。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水...
随着全球数字化进程加速,数据资源的战略价值日益凸显,《“十四五”大数据产业发展规划》中指出:“鼓励开展数据治理相关技术、理论、工具及标准研究,培育数据治理咨询和解决方案服务能力,提升行业数据治理水平。”星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据治理方面,星环科技能够从数据标准管理、数据质量管理、数据模型管理、数据架构管理、元数据管理、主数据管理、数据分级与安全管理等多方面,提供数据治理解决方案,帮助客户更好地实现数字化转型。星环科技数据治理整体解决方案框架包括了战略、机制、能力和平台四块,我们的愿景和目标,是为企业开展体系化数据治理、打造企业核心数据资产和持续赋能企业的业务价值创造。在机制层,可以为客户提供组织架构、管理制度、工作流程和成熟度评估等咨询服务,同时在每一次项目中,都为客户提供丰富的数据治理相关培训。在能力层,为企业的数据标准、数据质量、数据安全、数据生存周期、数据应用以及数据架构提供咨询和实施服务。未来星环科技还将一如既往发挥自身技术优势,赋能企业实现高效的数据治理...
企业数字化转型面临跨模型开发复杂、IT架构复杂(运维复杂;运维成本高;跨平台开发成本高;容易形成数据孤岛;数据流转复杂,一致性难以保障;数据存储冗余;计算/存储资源之间存在竞争)等困难,因此需要多模型支撑,引入多模型数据库。星环科技一直致力于国产化数据库的自主研发,打造了自主可控的高性能分布式数据库ArgoDB。作为一款领先的多模型数据库,ArgoDB支持关系型、搜索、文本、对象、图等10种数据模型,能够帮助用户简化系统架构、减少开发运维成本、提升用户体验和数据洞察力,满足更多复杂业务需求。ArgoDB可以替代Hadoop+MPP混合架构。支持标准SQL语法,提供多模分析、实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等先进技术能力。通过一个ArgoDB数据库,就可以满足数据仓库、实时数据仓库、数据集市、OLAP、AETP、联邦计算等各种需求。不同于传统方案为不同类型的数据单独部署和使用不同的数据库产品,基于星环科技ArgoDB的多模型统一技术架构,用户可以实现不同模型数据的统一存储管理,并且用户只需用一句SQL就能同时访问这3种存储模型进行联合分析,替代了之前3段代码...
什么是时空数据库?时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。时空数据库典型应用场景时空数据库具有广泛的应用场景,主要涵盖以下几个方面:交通运输领域:时空数据库可以应用于公路、铁路、航空等交通模式的时空分析和智能调度,如交通拥堵预测、路况优化、航班调度等。城市规划和管理:时空数据库可以应用于城市规划、交通规划、城市公共服务等领域,通过分析城市的时空数据,提高城市运营效率和公共服务水平,如...
图数据库是一种用于存储和管理图数据的数据库,其数据模型采用图结构,由节点和边组成,并可以存储节点和边的属性,实现复杂关系的存储和查询。图数据库广泛应用于社交媒体、金融、物流、医疗、能源等领域。以下是图数据库主要应用场景:社交媒体:图数据库可以对社交网络中的关系和行为进行建模和分析,帮助社交媒体企业更好地了解用户需求和行为,实现精准定向广告和推荐。金融:图数据库可以帮助金融机构识别和预测欺诈行为、洗钱、风险管理等,从而提高金融业务的安全性和可靠性。物流:图数据库可以管理物流中的运输网络和物流信息,实现物流运输过程的可视化、实时监控和优化。医疗:图数据库可以帮助医疗机构分析医疗记录、患者病史、药品治疗效果等数据,优化医疗服务流程,支持医疗决策和疾病预测。能源:图数据库可以帮助能源企业管理能源产业链上的复杂关系和数据,提高能源效率、降低成本、控制风险。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCy...
TranswarpStellarDB是一款为企业级图应用而打造的分布式图数据库,用于快速查找数据间的关联关系,并提供强大的算法分析能力。StellarDB克服了万亿级关联图数据存储的难题,通过自定义图存储格式和集群化存储,实现了传统数据库无法提供的低延时多层关系查询,在社交网络、金融领域都有巨大应用潜力。TranswarpStellarDB具有以下优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的...
TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。StellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图...
高性能是图数据库重要的特点之一。与传统关系型数据库相比,图数据库在处理大规模图数据时,具有更快的读写速度和更强大的查询能力。以下是一些高性能的图数据库TranswarpStellarDB的介绍:TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。高性能图数据库StellarDB的优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩...
TranswarpDefensor是星环科技自主研发的数据安全管理平台,具备五大核心能力,包括了:敏感数据识别与分类分级,帮助企业全面梳理敏感资产,并绘制分类分级资产地图;提供数据脱敏和水印等能力,让敏感数据可以脱敏后服务业务,并在发生泄露后可以追踪溯源;能识别敏感数据操作并进行监测,能够识别流动中的敏感数据并触发对应的管理策略;大数据平台和数据库的操作审计,避免违规操作带来的数据安全风险;基于GB/T37964-2019《信息安全技术个人信息去标识化指南》《信息安全技术个人信息去标识化效果分级评估规范》实现自动化个人信息识别、去标识化以及去标识化评级,实现企业个人信息资产保护。基于以上五大核心能力,Defensor能够帮助企业了解内部数据敏感信息的资产地图,发现潜在风险,并监控企业重要数据的合规使用;同时,也能对企业敏感数据进行分类分级,通过数据脱敏、水印等方式对数据进行事前事后的保护,防止数据泄露或能够在数据泄露后做到可以溯源追踪。目前Defensor在交通、医疗、金融、高校等多个领域有落地案例。在车联网领域,随着智能化发展,云端产生了大量个人隐私数据,为了避免个人隐私泄露,防止不...