语言大模型数据服务

行业资讯
LLM 大语言模型
大语言模型(LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。大语言模型通常使用大规模的语料库进行训练,这些语料库包含了大量的文本数据,涵盖了各种领域和语言风格。通过训练,大语言模型可以学习到文本数据的内在特征和规律,从而在各种自然语言处理任务中表现出色。大语言模型的优势在于其能够处理复杂的自然语言任务,并且生成的文本质量较高。此外,由于大语言模型经过了大量的文本数据训练,因此其具有很好的泛化性能,可以适应多种场景和应用。LLM大语言模型的应用场景主要集中在自然语言处理、机器翻译、智能写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量的文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为显著。智能写作助手:可以利用LLM的文本生成能力,帮助人们快速生成高质量的文章、简历、报告等。智能客服机器人:能够帮助用户解决问题和提供相关服务。这类应用可以在电子商务、在线教育、医疗健康等领域得到
语言大模型数据服务 更多内容

行业资讯
大模型和大语言模型
参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。大语言模型:(LargeLanguageModels,简称LLMs)是大模型的一个子集,专注于处理自然语言,能够理解、生成和处理大规模文本数据。大语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。大语言模型的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。大模型是一个更广泛的概念,包括了大语言模型在内的多种类型的模型,而大语言模型则是专门针对自然语言处理任务的大模型。大模型可以应用于多种不同的领域,而大语言模型主要应用于自然语言相关的任务。大模型和大语言模型是人工智能领域中两个重要的概念,各自有不同的特点和应用场景。大模型:通常指的是具有大规模参数和复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个

行业资讯
语言模型与大语言模型
(NaturalLanguageProcessing,NLP)的一种方法,利用大规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。简单来说,大语言模型是一种深度学习模型,通过在大规模数据集。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现的概率。通过大量的文本数据学习语言的统计特征,然后生成具有相似统计特征的新文本。其主要目标是建立一个统计模型,用于估计文本模型在规模上有显著不同。这种类型的模型通常具备大量的参数,并利用巨大的文本语料库进行训练。大型语言模型是一种强大的工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本序列中每个词语或字符出现的概率,从而实现自然语言处理任务,如语言生成和语言理解。大型语言模型(LargeLanguageModel,LLM)是自然语言处理

行业资讯
语言模型与大语言模型
(NaturalLanguageProcessing,NLP)的一种方法,利用大规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。简单来说,大语言模型是一种深度学习模型,通过在大规模数据集。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现的概率。通过大量的文本数据学习语言的统计特征,然后生成具有相似统计特征的新文本。其主要目标是建立一个统计模型,用于估计文本模型在规模上有显著不同。这种类型的模型通常具备大量的参数,并利用巨大的文本语料库进行训练。大型语言模型是一种强大的工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本序列中每个词语或字符出现的概率,从而实现自然语言处理任务,如语言生成和语言理解。大型语言模型(LargeLanguageModel,LLM)是自然语言处理

行业资讯
大语言模型
生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。求索具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据分析人员以及业务管理者只需使用自然语言,就能利用TranswarpSoLar大模型获取所需的数据分析、展示和报告,轻松地应对各种复杂的数据分析挑战,并快速获得有价值的数据洞察,为企业的业务增长提供原动力。大语言模型(LargeLanguageModel,简称LLM)是然语言处理领域的一种重要技术,大语言模型可以为人工智能提供更为精准和自然的语言处理能力。LLM的核心思想是利用机器学习算法学习大规模语料库中的语言模型,并通过对学到的模型进行概率推断来构建对应的文本生成模型。大语言模型有助于提高机器的语言理解和生成能力。通常来说,人类的语言表达和理解非常灵活和多样化。我们可以使用不同的语言风格、词汇

行业资讯
大语言模型
大语言模型:开启智能服务新时代大语言模型是什么大语言模型是基于深度学习技术构建,通过对海量文本数据进行训练,以实现对自然语言理解与生成的人工智能模型。大语言模型的训练过程主要分为预训练和微调两个阶段模型之所以强大,在于其能够通过对大规模文本数据的学习,模拟人类大脑对语言关系的理解。它可以从文本中挖掘出词汇之间的语义相似性、上下位关系,句子之间的逻辑连贯关系等。大语言模型服务的特点与优势(一)卓越,针对特定任务(如文本分类、问答系统、文本生成等),使用小规模的有标注数据进行有监督学习。通过微调,模型能够将预训练阶段学到的通用语言知识与特定任务的要求相结合,从而在具体任务上表现出更好的性能。大语言能力彰显特性大语言模型具备卓越的语义理解能力,这源于其对海量文本数据的深度学习。通过预训练,模型能够捕捉到词汇在不同语境下的丰富语义,理解语法结构背后的逻辑关系,以及掌握广泛的常识知识。其还拥有强大的迁移学习能力,在预训练阶段学习到的通用语言知识和模式,具有很强的普适性。这意味着模型可以将这些知识迁移到不同的下游任务中,即使在新任务的数据量相对较少的情况下,也能取得不错的效果。大语言模型还呈现出

行业资讯
LLM 大语言模型
大语言模型(LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。大语言模型通常使用大规模的语料库进行训练,这些语料库包含了大量的文本数据,涵盖了各种领域和语言风格。通过训练,大语言模型可以学习到文本数据的内在特征和规律,从而在各种自然语言处理任务中表现出色。大语言模型的优势在于其能够处理复杂的自然语言任务,并且生成的文本质量较高。此外,由于大语言模型经过了大量的文本数据训练,因此其具有很好的泛化性能,可以适应多种场景和应用。LLM大语言模型的应用场景主要集中在自然语言处理、机器翻译、智能写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量的文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为显著。智能写作助手:可以利用LLM的文本生成能力,帮助人们快速生成高质量的文章、简历、报告等。智能客服机器人:能够帮助用户解决问题和提供相关服务。这类应用可以在电子商务、在线教育、医疗健康等领域得到

行业资讯
大模型和大语言模型
参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。大语言模型:(LargeLanguageModels,简称LLMs)是大模型的一个子集,专注于处理自然语言,能够理解、生成和处理大规模文本数据。大语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。大语言模型的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。大模型是一个更广泛的概念,包括了大语言模型在内的多种类型的模型,而大语言模型则是专门针对自然语言处理任务的大模型。大模型可以应用于多种不同的领域,而大语言模型主要应用于自然语言相关的任务。大模型和大语言模型是人工智能领域中两个重要的概念,各自有不同的特点和应用场景。大模型:通常指的是具有大规模参数和复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个

行业资讯
语言模型与大语言模型
(NaturalLanguageProcessing,NLP)的一种方法,利用大规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。简单来说,大语言模型是一种深度学习模型,通过在大规模数据集。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现的概率。通过大量的文本数据学习语言的统计特征,然后生成具有相似统计特征的新文本。其主要目标是建立一个统计模型,用于估计文本模型在规模上有显著不同。这种类型的模型通常具备大量的参数,并利用巨大的文本语料库进行训练。大型语言模型是一种强大的工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本序列中每个词语或字符出现的概率,从而实现自然语言处理任务,如语言生成和语言理解。大型语言模型(LargeLanguageModel,LLM)是自然语言处理

行业资讯
语言模型与大语言模型
(NaturalLanguageProcessing,NLP)的一种方法,利用大规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。简单来说,大语言模型是一种深度学习模型,通过在大规模数据集。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现的概率。通过大量的文本数据学习语言的统计特征,然后生成具有相似统计特征的新文本。其主要目标是建立一个统计模型,用于估计文本模型在规模上有显著不同。这种类型的模型通常具备大量的参数,并利用巨大的文本语料库进行训练。大型语言模型是一种强大的工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本序列中每个词语或字符出现的概率,从而实现自然语言处理任务,如语言生成和语言理解。大型语言模型(LargeLanguageModel,LLM)是自然语言处理
猜你喜欢
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...