语言大模型分布式训练算法

模型分布式训练是一种在多个计算节点上并行训练大型机器学习模型的方法,它能够显著提高训练效率和缩短训练时间。以下是一些关键的分布式训练技术和策略:数据并行:数据并行是最常见的分布式训练策略,数据被结构和计算资源的特点,可以选择最适合的并行策略组合进行训练。异步更新机制:在分布式训练中,异步更新机制可以提高效率,通过无锁数据结构最小化同步开销,并支持批量更新提高吞吐量。分布式训练器设计与实现:分布式训练器负责协调数据加载、前向传播、反向传播和参数更新等过程。一个高效的训练器需要处理多个关键问题,包括混合精度训练、梯度累积、优化器集成等。切分为多份并分发到每个设备上进行计算。每个设备都拥有完整的模型参数,计算完成后,设备间的梯度会被聚合并更新模型参数。这种方法能够充分利用多个设备的计算能力,加快训练速度。模型并行:在模型并行中,模型的不同部分被分配到不同的设备上进行计算。每个设备仅拥有模型的一部分,这使得超大的模型能够在有限的计算资源上训练模型并行通常与流水线并行结合使用,数据按顺序经过所有设备进行计算。流水线并行:流水线并行是

语言大模型分布式训练算法 更多内容

需要强大的计算资源和优化算法。由于训练数据的巨大规模,需要使用分布式计算框架和多GPU集群来加速训练过程。同时,为了改善训练果和加速收敛速度,需要使用各种优化算法,如自适应优化算法模型并行化技术。这些语言模型训练是指使用规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。语言模型训练技术和工具的不断发展为语言模型训练提供了坚实的基础。语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏单元数、学习率等,以取得佳的性能和效果。语言模型训练在自然语言处理和人工智能领域有着广泛的应用。例如,可以用于机器翻译、文本摘要、对话生成和智能问答等任务。此外,语言模的训练还可以用于生成文本,如自动
分布式机器学习是一种利用多个计算节点进行机器学习或者深度学习的算法和系统,旨在提高性能、保护隐私,并可扩展至更大规模的训练数据和更大的模型分布式机器学习方法可以有效地加速训练过程,同时提高模型的准确性和稳定性。在传统的机器学习过程中,数据集通常集中存储在一台计算机上进行模型训练和推理,因此计算和存储的压力非常训练时间长且效率低下。而分布式机器学习则将数据存储在多台计算机上,通过数据切分和并行计算的方式加速模型训练分布式机器学习的优势包括:可扩展性:可以将计算和存储分配到不同计算机上,随着数据集的增大,系统可以自动扩展。高效性:分布式机器学习可以将规模数据分成多个小数据集,同时在多个计算机上进行训练和优化,大大缩短训练时间。鲁棒性:由于数据可以被存储在多台设备上,因此即使某台设备或某个节点出现故障,系统仍然可以正常工作。分布式机器学习平台-SophonBaseSophonBase作为企业级一站数据科学平台,支持数据管理、可视化建模、编程式建模等功能模块,包含完备的统计、机器学习、深度学习算法,覆盖从数据接入、数据预处理,到模型训练模型部署、监控运维的机器学习模型全生命周期流程。
模型训练框架是深度学习领域的重要组成部分,尤其对于处理规模语言模型。这些框架通过优化算法、数据处理和硬件利用,提高了训练效率并降低了成本。模型设计语言模型通常采用Encoder-Decoder架构,以实现理解和生成任务的兼顾。训练过程训练过程涉及获取大量样本集(如预训练阶段),对样本进行Token化,并使用分布式策略进行并行化处理。此外,使用动态精度缩放和梯度累积可以进一步提高效率。模型评估与优化在预训练和微调之后,通过验证集或测试集评估模型性能。如果表现不佳,则可能需要调整超参数、增加数据量或更改架构。随着研究的进步和新框架的发展,语言模型正变得越来越有效且实用。然而,面对计算资源限制时仍需继续探索如何降低开销同时保持性能水平。未来的规模深度学习工作将继续关注提高效率的同时保持或增强准确性,并寻找适用于各种应用的有效解决方案。
(NaturalLanguageProcessing,NLP)的一种方法,利用规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。简单来说,语言模型是一种深度学习模型,通过在规模数据集所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现的概率。通过大量的文本数据学习语言的统计特征,然后生成具有相似统计特征的新文本。其主要目标是建立一个统计模型,用于估计文本上进行训练,以实现对人类语言的理解。它的主要目标是准确地学习和理解人类语言,使得机器能够像人类一样解释和理解语言。这种模型的出现彻底改变了计算机理解和生成人类语言的方式。与普通的语言模型相比,大型语言模型在规模上有显著不同。这种类型的模型通常具备大量的参数,并利用巨大的文本语料库进行训练。大型语言模型是一种强大的工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本生成、情感分析、问答系统、自动文摘、机器翻译、文献分类等。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业
模型分布式推理是应对模型推理过程中算力需求和成本挑战的重要技术手段。模型通常具有海量的参数,其推理对算力要求极高,导致推理成本中95%用于算力,且“万卡集群”的使用效率经常在50%以下,存在算需求。增强系统的可扩展性:随着数据量和模型规模的不断增加,可以方便地添加更多的计算设备到分布式系统中,实现系统的线性扩展,以应对不断增长的业务需求。的闲置和浪费,进一步降低了运营成本。提高推理性能:分布式推理可以并行处理多个任务,大大缩短了推理的时间,提高了系统的响应速度和吞吐量,能够更好地满足实时性要求较高的应用场景,如在线客服、智能助手等的力资源浪费的情况。单张GPU卡的显存难以支撑模型的推理,无法满足模型的实时性和高吞吐量要求。实现方式模型并行:将模型分割成多个子模型,分配到不同的计算设备上进行推理,然后再将结果进行合并。例如一致性和同步问题。优势降低算力成本:通过将推理任务分布到多个计算设备上,可以充分利用现有的算力资源,避免了为单个大模型配备昂贵的高端计算设备,从而降低了硬件成本。同时,提高了算力的使用效率,减少了算力
AI模型训练方法涉及数据预处理、模型构建、分布式训练、优化技术应用、正则化、学习率调整和迁移学习等关键步骤,以提升模型性能和加速训练过程。AI模型训练方法主要包括以下几个关键步骤:数据预处理提高模型性能。分布式训练:为了加速模型训练,采用数据并行和模型并行等分布式训练技术,以提高计算效率。优化技术:优化算法,在训练过程中自适应地调整学习率,提高模型的收敛速度。正则化和学习率调整:通过引入:对原始数据进行清洗、整理和标注,以符合训练AI模型的标准和要求。模型构建:设计和调整模型架构,可能需要对基础模型进行微调或者迁移学习。模型训练:利用准备好的数据集对模型进行训练,评估模型在特定任务上的性能表现,并进行多轮迭代优化,直到模型达到预定的性能指标和精度要求。模型评估:对训练好的模型进行评估,以了解其在训练集和验证集上的表现,并根据评估结果对模型进行调整,如调整模型结构、参数设置等,以正则化项降低模型过拟合的风险,并在训练过程中调整学习率以适应模型的表现。迁移学习:利用预训练模型在相关任务上的知识,提高模型在新任务上的表现。
模型训练方法包括预训练、指令微调、强化学习、模型并行与分布式训练、优化器与学习率调整以及模型压缩与量化等,各环节协同助力模型训练与优化。以下是一些常见的模型训练方法:预训练数据收集与预处理成结果的质量和适应性。模型并行与分布式训练数据并行:将训练数据分割成多个子集,分别分配到不同的计算设备上进行处理,每个设备计算得到的梯度在参数更新时进行汇总和平均,以实现并行训练,加快训练速度。模型并行:收集海量的文本、图像、语音等多模态数据。对数据进行清洗,去除不相关、低质量、重复的数据,纠正错误等;进行分词、标记化等操作,将文本转化为模型可处理的格式。预训练任务设计:常见的预训练任务有语言模型任务强化学习(RLHF):让人类对模型生成的结果进行评价和打分,基于这些反馈信息训练一个奖励模型。奖励模型学习预测生成结果的评分,然后在强化学习过程中,利用奖励模型的输出作为奖励信号,引导模型生成更符合:当模型规模过大,单个设备无法容纳整个模型时,将模型的不同层或部分分配到不同的设备上进行计算,设备之间需要进行通信以传递中间结果,从而实现对规模模型训练。混合并行:结合数据并行和模型并行的方法
行业资讯
模型训练
,NSP)等任务来指导模型学习。高效训练技术:为了加速模型的预训练过程并提高其性能,研究者们开发了一系列技术,如分布式计算、混合精度训练、梯度累积等策略。模型训练是一个复杂且重要的步骤,它奠定了模型训练是指在大量未标注的文本数据上进行的初始训练过程,旨在使模型学习到丰富的语言结构和模式。这一过程对于模型(如LLM)很重要,能够帮助模型构建起对语言的理解基础,从而在后续的微调或特定任务中表现更佳。从零预训练一个自己的模型:这通常涉及使用规模文本数据集,通过自监督学习方法让模型学习到语言的内在规律。预训练的目标是使模型能够理解语义、语法以及上下文关系。模型训练流程:包括了数据准备、模型架构设计、损失函数定义、优化算法选择等多个环节。预训练阶段会使用诸如掩码语言建模(MaskedLanguageModeling,MLM)、预测下文(NextSentencePrediction模型后续应用的基础。通过在海量数据上的无监督学习,模型能够掌握广泛的语言知识,并为解决各种自然语言处理任务做好准备。
大型语言模型(LLM)是指采用深度学习算法训练巨型自然语言处理模型。LLM的特点是能够处理大量的文本数据,从而具有很强的自然语言理解生成能力。LLM可以通过学习规模语料库中的统计规律和模式,从而、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成语言模型,融合了舆情、资金、人物、空间自然语言处理的效率和准确率,还能够为人工智能领域的发展提供强有力的支持。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、研究员和投资经理的日常工作,帮助企业更好地应对复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。求索具备数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...