边缘计算白皮书

边缘计算
Sophon边缘计算平台作为星环面向计算机视觉和物联网应用方向的感知智能平台,能够让用户通过低代码交互操作的方式,快速搭建智能化场景方案,从而实现AI模型的快速落地,缩短AI项目实施部署周期,同时解决多模态源数据的集成和结构化治理等问题。

边缘计算白皮书 更多内容

近日,中国信息通信研究院重磅发布了《“边缘计算+”技术白皮书》。白皮书基于当前边缘计算的技术融合创新,首次提出“边缘计算+”概念,从核心价值、参考架构、关键技术能力、典型案例、趋势展望等不同方面开展“边缘计算+”技术创新体系研究。星环科技积极参与了白皮书"边缘计算+人工智能"、"边缘计算+参考模型"等章节的编写工作,为边缘计算在千行百业的落地提供重要参考。白皮书指出,“边缘计算+”既是边缘计算技术的融合创新,也是边缘计算服务能力的升级演进,其深层含义是各类技术通过“边缘计算化”赋能产业数字化、网络化、智能化转型。星环科技以引领行业技术发展和助力各行各业数字化转型为使命,通过数据全生命周期的基础软件与服务,为企业搭建数字化转型的数字底座。在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算
,其深层含义是各类技术通过“边缘计算化”赋能产业数字化、网络化、智能化转型。本白皮书基于行业研究和调研报告,梳理了技术融合在边缘计算行业赋能方面的助力作用,总结提炼边缘计算技术融合的核心价值;提出作为行业数字转型的核心能力底座,边缘计算获得业界的广泛关注。随着边缘计算在医疗、交通、工业等各行业规模部署,要求边缘计算应面向特定行业具备差异化与定制化的能力,为满足行业应用在高效算力、海量接入、智能分析、安全防护等方面的需求,边缘计算技术与5G、大数据、人工智能、安全等各类技术深度融合,共同构成“边缘计算+”技术创新体系。“边缘计算+”既是边缘计算技术的融合创新,也是边缘计算服务能力的升级演进了“边缘计算+”内涵,从边缘计算赋能底座、技术融合与行业应用三个层次介绍“边缘计算+”参考模型;从场景需求、技术架构和典型案例三个方面,系统梳理“边缘计算+5G”、“边缘计算+人工智能”、“边缘计算+音视频”等六项“边缘计算+”的关键技术能力;后围绕算网融合、一体化智能化、云原生与安全防护,展望“边缘计算+”技术演进趋势。*来源:算网融合产业及标准推进委员会
中国信通院发布了《全球数字治理白皮书(2023年)》。连续四年发布白皮书核心观点包括:全球数字治理面临复杂多变新形势,前沿人工智能“飞跃”突破敲响安全警钟,人工智能技术军民两用、危险难预测、转移难
中国信通院发布了《全球数字治理白皮书(2023年)》。连续四年发布白皮书核心观点包括:全球数字治理面临复杂多变新形势,前沿人工智能“飞跃”突破敲响安全警钟,人工智能技术军民两用、危险难预测、转移难
2021年,中国信通院云大所联合隐私计算联盟发布《隐私计算白皮书(2021年)》,全面展示了隐私计算发展状况。经过一年多的发展,隐私计算在政策、技术、应用等方面上均迎来了新的进展。《隐私计算白皮书(2022年)》将全面展现行业成就及发展新态势,希望为产业界应用隐私计算技术提供参考指导,推动隐私计算行业健康发展,让隐私计算在数据要素市场建设过程中发挥更大的价值。本研究报告亮点如下:纵览发展历程,明确当前进展根据隐私计算技术出现、发展、落地到广泛应用的不同特点,梳理隐私计算发展阶段,明确当下发展阶段并研判未来发展前景。把握技术前沿,洞察发展趋势作为数据安全流通的关键技术,隐私计算技术向推动应用落地的方向持续发展,可用性和可信性进一步增强。通过对技术发展的前沿进行整理和分析,洞察隐私计算技术发展趋势,为落地应用搭建桥梁。聚焦应用实际,凸显应用优势在广泛调研的基础上全面梳理隐私计算在实际数据流通中的新应用情况,深度剖析隐私计算发挥巨大价值的内在逻辑,更加清晰地回答"隐私计算与传统数据流通技术相比有何优势""哪些特定创新场景只有隐私计算能够解决"等问题,进一步明确隐私计算优势,促进隐私计算应用
中国信通院发布了《全球数字治理白皮书(2023年)》。连续四年发布白皮书核心观点包括:全球数字治理面临复杂多变新形势,前沿人工智能“飞跃”突破敲响安全警钟,人工智能技术军民两用、危险难预测、转移难
中国信通院发布了《数据要素白皮书(2022年)》,白皮书核心观点包括:数据要素主要通过3种途径释放价值:业务贯通,通过数据支撑业务系统运转,实现线下与线上、业务与业务之间的贯通;数智决策,通过数据的
中国信通院发布了《数据要素白皮书(2022年)》,白皮书核心观点包括:数据要素主要通过3种途径释放价值:业务贯通,通过数据支撑业务系统运转,实现线下与线上、业务与业务之间的贯通;数智决策,通过数据的
中国信通院发布了《数据要素白皮书(2022年)》,白皮书核心观点包括:数据要素主要通过3种途径释放价值:业务贯通,通过数据支撑业务系统运转,实现线下与线上、业务与业务之间的贯通;数智决策,通过数据的
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...