隐私计算应用场景比较
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境架构,确保平台在大数据量下也能获得卓越的性能。Sophon P²C的多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠的平台支持。
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
隐私计算应用场景比较 更多内容

行业资讯
隐私计算应用场景
隐私计算能够在保护数据隐私的前提下,实现数据的共享和计算,为多个领域的应用场景提供了强大的支持。在联合营销领域,隐私计算的应用为跨行业数据融合提供了解决方案。随着营销业务的智能化发展,用户画像的构建用户画像,实现资源的优势互补,还能根据建模结果制定更精准的营销策略,实现双赢的联合营销目的。联合风控是隐私计算在金融领域的另一个重要应用场景。金融机构在风控过程中需要综合考虑客户的多个维度数据,但不,从而综合提升金融机构的风控能力。在智慧医疗领域,隐私计算技术的应用也具有重要意义。医学研究、基因分析等工作需要依赖大量数据的积累,但这些数据往往分散在不同的医疗机构和业务系统内,难以实现互通互联。隐私计算技术可以在保护数据隐私的前提下,实现医学数据的安全统计分析和医学模拟仿真和预判。这不仅有助于推动临床科研成果的产出,还可以进行跨机构的精准防疫、基因分析、临床医学研究等应用,提升医疗服务的质量和变得越来越重要。然而,不同机构间的用户数据往往是相互割裂的,难以形成完整的用户画像。通过隐私计算技术,不同机构可以在不输出原始数据的基础上,共享各自的用户数据进行营销模型计算。这样不仅可以构建更立体的

行业资讯
隐私计算应用场景
隐私计算能够在保护数据隐私的前提下,实现数据的共享和计算,为多个领域的应用场景提供了强大的支持。在联合营销领域,隐私计算的应用为跨行业数据融合提供了解决方案。随着营销业务的智能化发展,用户画像的构建用户画像,实现资源的优势互补,还能根据建模结果制定更精准的营销策略,实现双赢的联合营销目的。联合风控是隐私计算在金融领域的另一个重要应用场景。金融机构在风控过程中需要综合考虑客户的多个维度数据,但不,从而综合提升金融机构的风控能力。在智慧医疗领域,隐私计算技术的应用也具有重要意义。医学研究、基因分析等工作需要依赖大量数据的积累,但这些数据往往分散在不同的医疗机构和业务系统内,难以实现互通互联。隐私计算技术可以在保护数据隐私的前提下,实现医学数据的安全统计分析和医学模拟仿真和预判。这不仅有助于推动临床科研成果的产出,还可以进行跨机构的精准防疫、基因分析、临床医学研究等应用,提升医疗服务的质量和变得越来越重要。然而,不同机构间的用户数据往往是相互割裂的,难以形成完整的用户画像。通过隐私计算技术,不同机构可以在不输出原始数据的基础上,共享各自的用户数据进行营销模型计算。这样不仅可以构建更立体的

行业资讯
隐私计算应用场景
隐私计算能够在保护数据隐私的前提下,实现数据的共享和计算,为多个领域的应用场景提供了强大的支持。在联合营销领域,隐私计算的应用为跨行业数据融合提供了解决方案。随着营销业务的智能化发展,用户画像的构建用户画像,实现资源的优势互补,还能根据建模结果制定更精准的营销策略,实现双赢的联合营销目的。联合风控是隐私计算在金融领域的另一个重要应用场景。金融机构在风控过程中需要综合考虑客户的多个维度数据,但不,从而综合提升金融机构的风控能力。在智慧医疗领域,隐私计算技术的应用也具有重要意义。医学研究、基因分析等工作需要依赖大量数据的积累,但这些数据往往分散在不同的医疗机构和业务系统内,难以实现互通互联。隐私计算技术可以在保护数据隐私的前提下,实现医学数据的安全统计分析和医学模拟仿真和预判。这不仅有助于推动临床科研成果的产出,还可以进行跨机构的精准防疫、基因分析、临床医学研究等应用,提升医疗服务的质量和变得越来越重要。然而,不同机构间的用户数据往往是相互割裂的,难以形成完整的用户画像。通过隐私计算技术,不同机构可以在不输出原始数据的基础上,共享各自的用户数据进行营销模型计算。这样不仅可以构建更立体的

行业资讯
隐私计算应用场景
隐私计算能够在保护数据隐私的前提下,实现数据的共享和计算,为多个领域的应用场景提供了强大的支持。在联合营销领域,隐私计算的应用为跨行业数据融合提供了解决方案。随着营销业务的智能化发展,用户画像的构建用户画像,实现资源的优势互补,还能根据建模结果制定更精准的营销策略,实现双赢的联合营销目的。联合风控是隐私计算在金融领域的另一个重要应用场景。金融机构在风控过程中需要综合考虑客户的多个维度数据,但不,从而综合提升金融机构的风控能力。在智慧医疗领域,隐私计算技术的应用也具有重要意义。医学研究、基因分析等工作需要依赖大量数据的积累,但这些数据往往分散在不同的医疗机构和业务系统内,难以实现互通互联。隐私计算技术可以在保护数据隐私的前提下,实现医学数据的安全统计分析和医学模拟仿真和预判。这不仅有助于推动临床科研成果的产出,还可以进行跨机构的精准防疫、基因分析、临床医学研究等应用,提升医疗服务的质量和变得越来越重要。然而,不同机构间的用户数据往往是相互割裂的,难以形成完整的用户画像。通过隐私计算技术,不同机构可以在不输出原始数据的基础上,共享各自的用户数据进行营销模型计算。这样不仅可以构建更立体的

行业资讯
隐私计算的应用场景
隐私计算在多个领域都有广泛且重要的应用场景,以下是一些具体介绍:金融领域联合风控:银行、证券等金融机构之间在不泄露各自客户敏感信息的情况下,通过隐私计算技术联合进行风险评估和信用评级。例如,利用多方的数据,但由于隐私和安全问题,数据难以共享和协同。隐私计算技术可打破部门之间的数据壁垒,实现政务数据的安全共享和协同应用。智慧城市建设:在智慧城市建设中,需要整合城市各领域的数据,如交通、能源、环保等安全计算或联邦学习技术,整合多家金融机构的数据,更全面准确地评估客户的信用风险,提高信贷决策的科学性。金融监管:监管机构可在保护金融机构商业秘密和客户隐私的前提下,对金融市场数据进行实时监测和分析,及时发现潜在的金融风险和违规行为。如通过隐私计算技术对银行的交易数据、资产负债表等进行加密分析,确保金融市场的稳定运行。投资理财:金融机构可以在不获取客户全部资产信息的情况下,为客户提供个性化的投资理财方案。利用隐私计算技术对客户的部分公开数据和授权数据进行分析,结合市场动态,为客户推荐合适的投资产品。医疗健康领域医疗数据共享与科研:不同医疗机构之间存在数据孤岛问题,隐私计算技术可在保护患者隐私的

行业资讯
隐私计算的应用场景
隐私计算在多个领域都有广泛且重要的应用场景,以下是一些具体介绍:金融领域联合风控:银行、证券等金融机构之间在不泄露各自客户敏感信息的情况下,通过隐私计算技术联合进行风险评估和信用评级。例如,利用多方的数据,但由于隐私和安全问题,数据难以共享和协同。隐私计算技术可打破部门之间的数据壁垒,实现政务数据的安全共享和协同应用。智慧城市建设:在智慧城市建设中,需要整合城市各领域的数据,如交通、能源、环保等安全计算或联邦学习技术,整合多家金融机构的数据,更全面准确地评估客户的信用风险,提高信贷决策的科学性。金融监管:监管机构可在保护金融机构商业秘密和客户隐私的前提下,对金融市场数据进行实时监测和分析,及时发现潜在的金融风险和违规行为。如通过隐私计算技术对银行的交易数据、资产负债表等进行加密分析,确保金融市场的稳定运行。投资理财:金融机构可以在不获取客户全部资产信息的情况下,为客户提供个性化的投资理财方案。利用隐私计算技术对客户的部分公开数据和授权数据进行分析,结合市场动态,为客户推荐合适的投资产品。医疗健康领域医疗数据共享与科研:不同医疗机构之间存在数据孤岛问题,隐私计算技术可在保护患者隐私的

行业资讯
隐私计算技术的应用场景
企业、互联网企业等社会数据融合的解决方案,为政府决策提供更为全面和准确的数据支持。隐私计算技术在金融、医疗健康和政务等行业具有广泛的应用前景。随着技术的不断进步和应用场景的不断拓展,隐私计算技术将在更多领域发挥重要作用,为数据共享和价值挖掘提供更为安全和有效的解决方案。方提供了安全的合作模式,具有广泛的应用前景。金融行业金融行业作为数据密集型行业,对数据的安全性和隐私性有着极高的要求。隐私计算技术为金融行业提供了有效的解决方案。在客户画像和风控领域,多家金融机构可以之间的信息共享,从而提高信用评估的准确性和效率。医疗健康行业在医疗健康行业,隐私计算技术同样具有广阔的应用前景。随着医疗数据的不断增加和人工智能技术的快速发展,利用医疗数据进行病情推断和医疗科研已成为随着数字化时代的快速发展,数据已成为各行各业的核心资源。然而,数据的隐私保护问题也日益凸显,如何在保障数据隐私的前提下实现数据共享和价值挖掘,成为了一个亟待解决的问题。隐私计算技术应运而生,为各参与通过隐私计算技术联合分析客户数据,为客户提供更精准的产品和服务推荐,同时避免了客户个人信息的泄露。在信用评估方面,隐私计算技术可以在不泄露客户已有贷款数额、黑名单等敏感信息的前提下,实现多家金融机构

行业资讯
隐私计算技术的应用场景
企业、互联网企业等社会数据融合的解决方案,为政府决策提供更为全面和准确的数据支持。隐私计算技术在金融、医疗健康和政务等行业具有广泛的应用前景。随着技术的不断进步和应用场景的不断拓展,隐私计算技术将在更多领域发挥重要作用,为数据共享和价值挖掘提供更为安全和有效的解决方案。方提供了安全的合作模式,具有广泛的应用前景。金融行业金融行业作为数据密集型行业,对数据的安全性和隐私性有着极高的要求。隐私计算技术为金融行业提供了有效的解决方案。在客户画像和风控领域,多家金融机构可以之间的信息共享,从而提高信用评估的准确性和效率。医疗健康行业在医疗健康行业,隐私计算技术同样具有广阔的应用前景。随着医疗数据的不断增加和人工智能技术的快速发展,利用医疗数据进行病情推断和医疗科研已成为随着数字化时代的快速发展,数据已成为各行各业的核心资源。然而,数据的隐私保护问题也日益凸显,如何在保障数据隐私的前提下实现数据共享和价值挖掘,成为了一个亟待解决的问题。隐私计算技术应运而生,为各参与通过隐私计算技术联合分析客户数据,为客户提供更精准的产品和服务推荐,同时避免了客户个人信息的泄露。在信用评估方面,隐私计算技术可以在不泄露客户已有贷款数额、黑名单等敏感信息的前提下,实现多家金融机构
猜你喜欢
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...