银行监管数据仓库

数据仓库
星环数据仓库解决方案具备超高性能、高可扩展、极简易用、高性价比等特性。面对高速增长的数据规模,传统的数据仓库负荷严重超出。不扩容会影响性能与稳定性,但是扩容却十分昂贵。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。

银行监管数据仓库 更多内容

行业资讯
银行数据仓库
银行数据仓库银行进行数据管理与分析的核心系统,具有重要作用和独特的架构及应用特点:作用支持决策制定:整合银行内部各类业务数据,为管理层提供全面、准确且及时的数据洞察,助力制定战略决策。风险管理基本信息、交易行为、偏好等数据,实现客户细分与精准营销,增强客户满意度和忠诚度,提升银行市场份额。合规与审计:集中存储和管理各类业务数据,满足监管部门对银行数据的合规性要求,为内部审计工作提供详实的数据场景构建数据集市,提供定制化的数据服务,满足各部门的个性化分析需求。数据存储与管理技术:基于大规模并行处理(MPP)架构的数据仓库平台,或者采用云数据仓库解决方案,以应对海量数据的存储和高效处理需求。同时,结合数据压缩、索引优化、分区存储等技术手段,提高数据存储效率和查询性能。ETL与数据质量管理:配备强大的ETL(抽取、转换、加载)工具和流程,确保数据从不同数据源准确、高效地抽取并转换为符合数据仓库要求的数据格式,加载到相应的数据层。同时,建立完善的数据质量管理体系,从数据完整性、准确性、一致性、及时性等多个维度进行监控和评估,通过数据质量规则定义、数据质量监控工具应用以及定期的数据质量报告生成,及时发现和解决数据质量问题,保障数据仓库数据的可靠性和可用性。
行业资讯
银行数据仓库
银行数据仓库银行进行数据管理与分析的核心系统,具有重要作用和独特的架构及应用特点:作用支持决策制定:整合银行内部各类业务数据,为管理层提供全面、准确且及时的数据洞察,助力制定战略决策。风险管理基本信息、交易行为、偏好等数据,实现客户细分与精准营销,增强客户满意度和忠诚度,提升银行市场份额。合规与审计:集中存储和管理各类业务数据,满足监管部门对银行数据的合规性要求,为内部审计工作提供详实的数据场景构建数据集市,提供定制化的数据服务,满足各部门的个性化分析需求。数据存储与管理技术:基于大规模并行处理(MPP)架构的数据仓库平台,或者采用云数据仓库解决方案,以应对海量数据的存储和高效处理需求。同时,结合数据压缩、索引优化、分区存储等技术手段,提高数据存储效率和查询性能。ETL与数据质量管理:配备强大的ETL(抽取、转换、加载)工具和流程,确保数据从不同数据源准确、高效地抽取并转换为符合数据仓库要求的数据格式,加载到相应的数据层。同时,建立完善的数据质量管理体系,从数据完整性、准确性、一致性、及时性等多个维度进行监控和评估,通过数据质量规则定义、数据质量监控工具应用以及定期的数据质量报告生成,及时发现和解决数据质量问题,保障数据仓库数据的可靠性和可用性。
不同的数据共享方式,如数据仓库数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等商业银行数据治理指商业银行数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下一些原则:数据质量管理:数据质量管理是商业银行数据治理的核心,确保数据的准确性、可靠性和一致性。银行应该对数据进行规范化处理、数据归档和数据备份,确保数据可靠和防止数据灾害。数据安全控制:商业银行要保障
不同的数据共享方式,如数据仓库数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等商业银行数据治理指商业银行数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下一些原则:数据质量管理:数据质量管理是商业银行数据治理的核心,确保数据的准确性、可靠性和一致性。银行应该对数据进行规范化处理、数据归档和数据备份,确保数据可靠和防止数据灾害。数据安全控制:商业银行要保障
不同的数据共享方式,如数据仓库数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等商业银行数据治理指商业银行数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下一些原则:数据质量管理:数据质量管理是商业银行数据治理的核心,确保数据的准确性、可靠性和一致性。银行应该对数据进行规范化处理、数据归档和数据备份,确保数据可靠和防止数据灾害。数据安全控制:商业银行要保障
不同的数据共享方式,如数据仓库数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等商业银行数据治理指商业银行数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下一些原则:数据质量管理:数据质量管理是商业银行数据治理的核心,确保数据的准确性、可靠性和一致性。银行应该对数据进行规范化处理、数据归档和数据备份,确保数据可靠和防止数据灾害。数据安全控制:商业银行要保障
不同的数据共享方式,如数据仓库数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等商业银行数据治理指商业银行数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下一些原则:数据质量管理:数据质量管理是商业银行数据治理的核心,确保数据的准确性、可靠性和一致性。银行应该对数据进行规范化处理、数据归档和数据备份,确保数据可靠和防止数据灾害。数据安全控制:商业银行要保障
不同的数据共享方式,如数据仓库数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等商业银行数据治理指商业银行数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下一些原则:数据质量管理:数据质量管理是商业银行数据治理的核心,确保数据的准确性、可靠性和一致性。银行应该对数据进行规范化处理、数据归档和数据备份,确保数据可靠和防止数据灾害。数据安全控制:商业银行要保障
不同的数据共享方式,如数据仓库数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等商业银行数据治理指商业银行数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下一些原则:数据质量管理:数据质量管理是商业银行数据治理的核心,确保数据的准确性、可靠性和一致性。银行应该对数据进行规范化处理、数据归档和数据备份,确保数据可靠和防止数据灾害。数据安全控制:商业银行要保障
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...