银行数据集市纳入公司

数据集市
星环数据集市解决方案是专门为特定部门/业务/项目设计和构建的数据仓库的一个子部分。由于每个数据集市仅用于特定部门,因此通过数据集市性能负载在部门内部得到了很好的管理,不会影响其他集市的分析工作。星环数据集市解决方案为客户构建稳定高效的数据集市平台,广泛应用于金融、政企、交通、能源、电信等多个领域。

银行数据集市纳入公司 更多内容

行业资讯
银行数据仓库
银行数据仓库是银行进行数据管理与分析的核心系统,具有重要作用和独特的架构及应用特点:作用支持决策制定:整合银行内部各类业务数据,为管理层提供全面、准确且及时的数据洞察,助力制定战略决策。风险管理基本信息、交易行为、偏好等数据,实现客户细分与精准营销,增强客户满意度和忠诚度,提升银行市场份额。合规与审计:集中存储和管理各类业务数据,满足监管部门对银行数据的合规性要求,为内部审计工作提供详实的数据支持,确保银行运营符合法律法规和内部制度规范架构特点数据来源广泛:涵盖核心银行系统、信用卡系统、网上银行系统、风险管理系统以及外部信用评级机构、市场数据供应商等多个数据源,数据类型丰富多样,包括结构化:汇聚客户信用信息、贷款还款记录、市场风险指标等数据,构建风险评估模型,精确识别和量化信用风险、市场风险以及操作风险等各类风险,辅助银行提前制定风险应对策略,保障银行资产安全。客户关系管理:深度剖析客户数据、半结构化数据以及非结构化数据。分层架构设计:通常采用多层架构,包括操作数据存储(ODS)层、明细数据层(DWD)、汇总数据层(DWS)和应用数据层(ADS)或数据集市层。ODS层存储从各数据
行业资讯
银行数据仓库
银行数据仓库是银行进行数据管理与分析的核心系统,具有重要作用和独特的架构及应用特点:作用支持决策制定:整合银行内部各类业务数据,为管理层提供全面、准确且及时的数据洞察,助力制定战略决策。风险管理基本信息、交易行为、偏好等数据,实现客户细分与精准营销,增强客户满意度和忠诚度,提升银行市场份额。合规与审计:集中存储和管理各类业务数据,满足监管部门对银行数据的合规性要求,为内部审计工作提供详实的数据支持,确保银行运营符合法律法规和内部制度规范架构特点数据来源广泛:涵盖核心银行系统、信用卡系统、网上银行系统、风险管理系统以及外部信用评级机构、市场数据供应商等多个数据源,数据类型丰富多样,包括结构化:汇聚客户信用信息、贷款还款记录、市场风险指标等数据,构建风险评估模型,精确识别和量化信用风险、市场风险以及操作风险等各类风险,辅助银行提前制定风险应对策略,保障银行资产安全。客户关系管理:深度剖析客户数据、半结构化数据以及非结构化数据。分层架构设计:通常采用多层架构,包括操作数据存储(ODS)层、明细数据层(DWD)、汇总数据层(DWS)和应用数据层(ADS)或数据集市层。ODS层存储从各数据
行业资讯
银行数据安全
随着信息技术和网络通信技术的飞速发展,银行数据安全问题越来越受到关注。银行数据银行的核心资产之一,保障银行数据安全是重中之重。银行数据安全的应对措施建立完备的数据安全管理制度:银行应建立起完备的数据有备无患。同时,建立完善的数据恢复机制,可在突发事件和数据损坏时快速恢复数据,减少数据丢失和损失。银行数据安全需要不断升级和完善。建立完备的数据安全管理制度,严把数据使用权限,加强技术防护和安全审计,做好数据备份和恢复,确保银行数据的安全,为客户提供安全可靠的金融服务。星环科技助力银行数据安全星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据数据安全管理制度,加强对数据的保护,明确岗位职责和权限,规范员工行为准则。同时,应按照规定制定相关信息安全规范,明确安全策略、技术标准等,确保银行系统的安全稳定运行。加强技术防护措施:银行应加强技术防护措施,包括加密技术、防病毒技术等,提高数据传输和存储的安全性和保密性。严格控制权限:银行应根据各职能部门的业务需求,授权相应的权限,对重要信息和系统进行分类管理。要做到权限可控、权限分级,避免高权限
行业资讯
银行数据安全
随着信息技术和网络通信技术的飞速发展,银行数据安全问题越来越受到关注。银行数据银行的核心资产之一,保障银行数据安全是重中之重。银行数据安全的应对措施建立完备的数据安全管理制度:银行应建立起完备的数据有备无患。同时,建立完善的数据恢复机制,可在突发事件和数据损坏时快速恢复数据,减少数据丢失和损失。银行数据安全需要不断升级和完善。建立完备的数据安全管理制度,严把数据使用权限,加强技术防护和安全审计,做好数据备份和恢复,确保银行数据的安全,为客户提供安全可靠的金融服务。星环科技助力银行数据安全星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据数据安全管理制度,加强对数据的保护,明确岗位职责和权限,规范员工行为准则。同时,应按照规定制定相关信息安全规范,明确安全策略、技术标准等,确保银行系统的安全稳定运行。加强技术防护措施:银行应加强技术防护措施,包括加密技术、防病毒技术等,提高数据传输和存储的安全性和保密性。严格控制权限:银行应根据各职能部门的业务需求,授权相应的权限,对重要信息和系统进行分类管理。要做到权限可控、权限分级,避免高权限
行业资讯
银行数据安全
随着信息技术和网络通信技术的飞速发展,银行数据安全问题越来越受到关注。银行数据银行的核心资产之一,保障银行数据安全是重中之重。银行数据安全的应对措施建立完备的数据安全管理制度:银行应建立起完备的数据有备无患。同时,建立完善的数据恢复机制,可在突发事件和数据损坏时快速恢复数据,减少数据丢失和损失。银行数据安全需要不断升级和完善。建立完备的数据安全管理制度,严把数据使用权限,加强技术防护和安全审计,做好数据备份和恢复,确保银行数据的安全,为客户提供安全可靠的金融服务。星环科技助力银行数据安全星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据数据安全管理制度,加强对数据的保护,明确岗位职责和权限,规范员工行为准则。同时,应按照规定制定相关信息安全规范,明确安全策略、技术标准等,确保银行系统的安全稳定运行。加强技术防护措施:银行应加强技术防护措施,包括加密技术、防病毒技术等,提高数据传输和存储的安全性和保密性。严格控制权限:银行应根据各职能部门的业务需求,授权相应的权限,对重要信息和系统进行分类管理。要做到权限可控、权限分级,避免高权限
行业资讯
银行数据治理
银行数据治理在数字化时代,数据已成为银行业核心的资产之一。银行每天处理着海量的交易数据、客户信息和市场动态,如何有效管理和利用这些数据,不仅关系到银行的运营效率,更直接影响风险控制和客户服务质量。银行数据治理正是为此而建立的一套系统性方法。数据治理的概念与重要性数据治理是指通过制定政策、流程和标准,确保数据的质量、安全性和可用性的全过程管理。对于银行业而言,数据治理不是单一的技术问题,而是涉及法规;三是挖掘数据价值,支持精准营销、风险定价等业务创新。银行数据治理的核心要素银行数据治理包含多个相互关联的组成部分。数据质量管理是基础的环节,需要通过数据清洗、标准化和验证等手段,消除重复、错误和、使用到归档或销毁的全过程规则。此外,明确的数据所有权和清晰的组织职责划分也是数据治理成功的关键。结语银行数据治理是一项长期而复杂的工作,需要管理层的高度重视和全行范围的参与。良好的数据治理不仅能减少风险、满足合规要求,更能释放数据潜能,成为银行数字化转型的重要推动力。未来,随着技术的发展和监管环境的变化,银行数据治理将持续演进,为银行业创造更大价值。
行业资讯
银行数据治理
银行数据治理在数字化时代,数据已成为银行业核心的资产之一。银行每天处理着海量的交易数据、客户信息和市场动态,如何有效管理和利用这些数据,不仅关系到银行的运营效率,更直接影响风险控制和客户服务质量。银行数据治理正是为此而建立的一套系统性方法。数据治理的概念与重要性数据治理是指通过制定政策、流程和标准,确保数据的质量、安全性和可用性的全过程管理。对于银行业而言,数据治理不是单一的技术问题,而是涉及法规;三是挖掘数据价值,支持精准营销、风险定价等业务创新。银行数据治理的核心要素银行数据治理包含多个相互关联的组成部分。数据质量管理是基础的环节,需要通过数据清洗、标准化和验证等手段,消除重复、错误和、使用到归档或销毁的全过程规则。此外,明确的数据所有权和清晰的组织职责划分也是数据治理成功的关键。结语银行数据治理是一项长期而复杂的工作,需要管理层的高度重视和全行范围的参与。良好的数据治理不仅能减少风险、满足合规要求,更能释放数据潜能,成为银行数字化转型的重要推动力。未来,随着技术的发展和监管环境的变化,银行数据治理将持续演进,为银行业创造更大价值。
行业资讯
银行数据治理
银行数据治理方案旨在通过建立全面的组织架构、明确的管理流程和严格的监管报送机制,确保数据的准确性、安全性和合规性,以提升银行的经营管理效率和风险控制能力。其核心内容可以概括为以下几个方面:数据治理覆盖、匹配性、持续性、有效性原则,确保数据治理覆盖数据全生命周期,与银行的管理模式、业务规模、风险状况相适应,并持续开展,推动数据真实准确客观反映银行实际情况,并有效应用于经营管理。监管数据纳入治理:银行需将监管数据纳入数据治理,建立工作机制和流程,确保监管数据报送工作有效组织开展,监管数据质量持续提升,法定代表人或主要负责人对监管数据质量承担最终责任。数据质量管理:银行应加强数据采集的统一管理架构:银行应建立一个健全的组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值。数据治理原则:遵循全向银行业监督管理机构报送。问责机制:建立问责机制,定期排查数据管理、数据质量控制、数据价值实现等方面问题,依据有关规定对高级管理层和相关部门及责任人进行问责。
行业资讯
银行数据安全
随着信息技术和网络通信技术的飞速发展,银行数据安全问题越来越受到关注。银行数据银行的核心资产之一,保障银行数据安全是重中之重。银行数据安全的应对措施建立完备的数据安全管理制度:银行应建立起完备的数据有备无患。同时,建立完善的数据恢复机制,可在突发事件和数据损坏时快速恢复数据,减少数据丢失和损失。银行数据安全需要不断升级和完善。建立完备的数据安全管理制度,严把数据使用权限,加强技术防护和安全审计,做好数据备份和恢复,确保银行数据的安全,为客户提供安全可靠的金融服务。星环科技助力银行数据安全星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据数据安全管理制度,加强对数据的保护,明确岗位职责和权限,规范员工行为准则。同时,应按照规定制定相关信息安全规范,明确安全策略、技术标准等,确保银行系统的安全稳定运行。加强技术防护措施:银行应加强技术防护措施,包括加密技术、防病毒技术等,提高数据传输和存储的安全性和保密性。严格控制权限:银行应根据各职能部门的业务需求,授权相应的权限,对重要信息和系统进行分类管理。要做到权限可控、权限分级,避免高权限
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果: