隐私计算在金融上的应用
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
隐私计算在金融上的应用 更多内容

行业资讯
隐私计算 金融
隐私计算在金融行业的应用正日益深入,为金融机构带来了诸多优势和创新机遇。以下是隐私计算在金融领域的一些主要应用场景和技术:应用场景联合风控:隐私计算技术可以帮助金融机构整合内外部数据资源进行风控预测保护用户的敏感信息,同时提高评估的准确性。技术路径隐私计算技术在金融行业的应用主要依赖于以下几种技术:多方安全计算(MPC):允许多个参与方在不暴露各自数据的情况下进行联合计算。联邦学习:在保护数据隐私的前提下,允许不同的数据持有者共同训练模型。可信执行环境(TEE):为敏感数据提供安全的计算环境,确保数据在处理过程中的安全性。法规与合规随着金融行业对数据隐私保护的重视,隐私计算技术的应用也受到越来越严格的合规性要求。金融机构需要在满足法律法规的前提下,利用隐私计算技术实现数据的安全流通和使用。,识别信用等级,降低多头信贷和欺诈风险。通过跨行业的数据联合建模,金融机构可以更有效地评估信贷风险,提高风控效果。精准营销:在金融营销中,隐私计算允许金融机构合规地调用外部数据,从而结合内外部数据进行精准营销,提升客户转化率。例如,通过联邦学习模型,某大型股份制银行在个人信贷营销中实现了显著的转化率提升。反洗钱与反欺诈:隐私计算技术能够提高金融机构的反洗钱和反欺诈能力,通过安全的数据共享和分析

行业资讯
隐私计算 金融
隐私计算在金融行业的应用正日益深入,为金融机构带来了诸多优势和创新机遇。以下是隐私计算在金融领域的一些主要应用场景和技术:应用场景联合风控:隐私计算技术可以帮助金融机构整合内外部数据资源进行风控预测保护用户的敏感信息,同时提高评估的准确性。技术路径隐私计算技术在金融行业的应用主要依赖于以下几种技术:多方安全计算(MPC):允许多个参与方在不暴露各自数据的情况下进行联合计算。联邦学习:在保护数据隐私的前提下,允许不同的数据持有者共同训练模型。可信执行环境(TEE):为敏感数据提供安全的计算环境,确保数据在处理过程中的安全性。法规与合规随着金融行业对数据隐私保护的重视,隐私计算技术的应用也受到越来越严格的合规性要求。金融机构需要在满足法律法规的前提下,利用隐私计算技术实现数据的安全流通和使用。,识别信用等级,降低多头信贷和欺诈风险。通过跨行业的数据联合建模,金融机构可以更有效地评估信贷风险,提高风控效果。精准营销:在金融营销中,隐私计算允许金融机构合规地调用外部数据,从而结合内外部数据进行精准营销,提升客户转化率。例如,通过联邦学习模型,某大型股份制银行在个人信贷营销中实现了显著的转化率提升。反洗钱与反欺诈:隐私计算技术能够提高金融机构的反洗钱和反欺诈能力,通过安全的数据共享和分析

行业资讯
隐私计算在数据流通的应用
隐私计算在数据流通应用中非常重要。不仅可以满足各行业对用户数据和企业数据的隐私保护需求,还可以为数据流通平台提供更高的灵活性和信度,使得数据交易更加便捷安全。金融行业:金融机构需要处理大量用户敏感数据,如个人信息、账户数据、交易记录等,隐私计算技术可以对这些数据进行加密和处理,确保用户的隐私得到充分保护的同时,满足金融机构数据共享和交易的需求。政务领域:政府机构需要处理大量涉及个人隐私的数据,如如能源得到广泛应用。这些行业需要处理各自特定领域的敏感数据,,隐私计算可以为这些行业提供保护数据隐私的有效手段,同时实现数据的共享和交易,推动行业的发展。隐私计算有各种不同的应用方式。这些方式包括公数据的处理、企业集团内部数据共享、企业间的数据传输和跨境数据流通等。居民户籍信息、社保数据、税务信息等,通过隐私计算的加密处理,政府部门可以在满足隐私保护的前提下,更好地进行数据共享和交流,提高政务工作效率。医疗行业:医疗机构需要处理大量患者的个人健康信息,如病历、检查结果、用药信息等,隐私计算可以确保这些敏感数据的安全性,同时为医疗机构之间的数据共享和交流提供技术支持,进一步促进医疗行业的发展。通信行业和互联网行业:随着移动互联网的普及和数字化时代的到来,个人

行业资讯
隐私计算在数据流通的应用
隐私计算在数据流通应用中非常重要。不仅可以满足各行业对用户数据和企业数据的隐私保护需求,还可以为数据流通平台提供更高的灵活性和信度,使得数据交易更加便捷安全。金融行业:金融机构需要处理大量用户敏感数据,如个人信息、账户数据、交易记录等,隐私计算技术可以对这些数据进行加密和处理,确保用户的隐私得到充分保护的同时,满足金融机构数据共享和交易的需求。政务领域:政府机构需要处理大量涉及个人隐私的数据,如如能源得到广泛应用。这些行业需要处理各自特定领域的敏感数据,,隐私计算可以为这些行业提供保护数据隐私的有效手段,同时实现数据的共享和交易,推动行业的发展。隐私计算有各种不同的应用方式。这些方式包括公数据的处理、企业集团内部数据共享、企业间的数据传输和跨境数据流通等。居民户籍信息、社保数据、税务信息等,通过隐私计算的加密处理,政府部门可以在满足隐私保护的前提下,更好地进行数据共享和交流,提高政务工作效率。医疗行业:医疗机构需要处理大量患者的个人健康信息,如病历、检查结果、用药信息等,隐私计算可以确保这些敏感数据的安全性,同时为医疗机构之间的数据共享和交流提供技术支持,进一步促进医疗行业的发展。通信行业和互联网行业:随着移动互联网的普及和数字化时代的到来,个人

近日,零壹财经•零壹智库发布国内首个系统研究隐私计算在金融领域应用的报告——《开启新纪元:隐私计算在金融领域应用发展报告(2021)》,星环科技荣登隐私计算厂商图谱,并成为国内唯一一家拥有大数据背景的入选企业。此次报告由零壹财经·零壹智库作为研究机构,由中国科技体制改革委员会数字经济发展研究小组、深圳市信用促进会、横琴数链数字金融研究院联合发布,旨在遴选出一批具有代表性的隐私计算厂商,树立引领解决方案。以隐私保护为前提,SophonP²C从根本上解决了跨组织协作时无法安全利用各方数据的困境,真正实现了“原始数据不流通,分析模型流通”。星环科技隐私计算平台SophonP²C架构图安全性方面、可靠、易用的隐私计算平台,从技术层面让跨企业的AI协作成为可能。现在《数据安全法》等开始实施,数据安全、隐私计算成为行业关注的热点,对于底层的基础软件应用而言,从源头上层层把控数据安全,势必会等。一旦大数据平台宕机,组织中诸多核心业务将无法开展,造成的损失不可估量。作为大数据和人工智能基础软件平台供应商,星环科技一直非常重视企业用户的数据安全问题。今年3月,星环科技发布了隐私计算和联邦学习
落地的方向持续发展,可用性和可信性进一步增强。通过对技术发展的前沿进行整理和分析,洞察隐私计算技术发展趋势,为落地应用搭建桥梁。聚焦应用实际,凸显应用优势在广泛调研的基础上全面梳理隐私计算在实际数据流2021年,中国信通院云大所联合隐私计算联盟发布《隐私计算白皮书(2021年)》,全面展示了隐私计算发展状况。经过一年多的发展,隐私计算在政策、技术、应用等方面上均迎来了新的进展。《隐私计算白皮书(2022年)》将全面展现行业成就及发展新态势,希望为产业界应用隐私计算技术提供参考指导,推动隐私计算行业健康发展,让隐私计算在数据要素市场建设过程中发挥更大的价值。本研究报告亮点如下:纵览发展历程参考。道阻且长,行则将至;行而不辍,未来可期。面对这个日新月异、快速发展的行业,我们期待与业界共同守正创新,推动隐私计算行业健康发展,让隐私计算在数据要素市场建设和数据流通过程中发挥更大的价值,踔厉奋发谱写隐私计算新篇章!*来源:隐私计算联盟、中国信息通信研究院云计算与大数据研究所",明确当前进展根据隐私计算技术出现、发展、落地到广泛应用的不同特点,梳理隐私计算发展阶段,明确当下发展阶段并研判未来发展前景。把握技术前沿,洞察发展趋势作为数据安全流通的关键技术,隐私计算技术向推动应用

行业资讯
隐私计算应用场景
隐私计算在众多领域都有着广泛且重要的应用场景。金融领域联合风控:银行、证券、保险等金融机构之间,可利用隐私计算技术在不泄露各自客户敏感信息(如资产状况、交易记录等)的前提下,共同进行风险评估和信用自身数据隐私的基础上,共享部分市场数据、宏观经济数据等,运用隐私计算技术进行数据挖掘和分析,共同构建更准确的金融市场预测模型,为投资者提供更具前瞻性的投资建议。医疗健康领域医疗数据共享与科研:医疗机构评级。例如,通过多方安全计算或联邦学习,整合多方数据来更精准地判断客户的信贷违约风险,提高信贷决策的科学性,降低不良贷款率。反洗钱监测:不同金融机构的数据汇聚后,借助隐私计算能在加密状态下分析交易行为模式,识别可疑洗钱活动。各机构无需公开客户的具体交易流水等隐私数据,仅通过隐私计算的协同分析机制,发现异常资金流向和交易特征,助力监管机构有效打击洗钱犯罪。金融市场预测:投资机构、金融研究机构等可在保护,提升学习效果。教育质量评估:教育主管部门、学校以及第三方评估机构,可在不泄露学生和教师个体隐私信息的基础上,运用隐私计算对教学过程、学习成果等数据进行联合分析,更客观全面地评估教育质量,为教育改革提供参考依据。

行业资讯
隐私计算应用场景
隐私计算在众多领域都有着广泛且重要的应用场景。金融领域联合风控:银行、证券、保险等金融机构之间,可利用隐私计算技术在不泄露各自客户敏感信息(如资产状况、交易记录等)的前提下,共同进行风险评估和信用自身数据隐私的基础上,共享部分市场数据、宏观经济数据等,运用隐私计算技术进行数据挖掘和分析,共同构建更准确的金融市场预测模型,为投资者提供更具前瞻性的投资建议。医疗健康领域医疗数据共享与科研:医疗机构评级。例如,通过多方安全计算或联邦学习,整合多方数据来更精准地判断客户的信贷违约风险,提高信贷决策的科学性,降低不良贷款率。反洗钱监测:不同金融机构的数据汇聚后,借助隐私计算能在加密状态下分析交易行为模式,识别可疑洗钱活动。各机构无需公开客户的具体交易流水等隐私数据,仅通过隐私计算的协同分析机制,发现异常资金流向和交易特征,助力监管机构有效打击洗钱犯罪。金融市场预测:投资机构、金融研究机构等可在保护,提升学习效果。教育质量评估:教育主管部门、学校以及第三方评估机构,可在不泄露学生和教师个体隐私信息的基础上,运用隐私计算对教学过程、学习成果等数据进行联合分析,更客观全面地评估教育质量,为教育改革提供参考依据。

行业资讯
隐私计算应用场景
隐私计算在众多领域都有着广泛且重要的应用场景。金融领域联合风控:银行、证券、保险等金融机构之间,可利用隐私计算技术在不泄露各自客户敏感信息(如资产状况、交易记录等)的前提下,共同进行风险评估和信用自身数据隐私的基础上,共享部分市场数据、宏观经济数据等,运用隐私计算技术进行数据挖掘和分析,共同构建更准确的金融市场预测模型,为投资者提供更具前瞻性的投资建议。医疗健康领域医疗数据共享与科研:医疗机构评级。例如,通过多方安全计算或联邦学习,整合多方数据来更精准地判断客户的信贷违约风险,提高信贷决策的科学性,降低不良贷款率。反洗钱监测:不同金融机构的数据汇聚后,借助隐私计算能在加密状态下分析交易行为模式,识别可疑洗钱活动。各机构无需公开客户的具体交易流水等隐私数据,仅通过隐私计算的协同分析机制,发现异常资金流向和交易特征,助力监管机构有效打击洗钱犯罪。金融市场预测:投资机构、金融研究机构等可在保护,提升学习效果。教育质量评估:教育主管部门、学校以及第三方评估机构,可在不泄露学生和教师个体隐私信息的基础上,运用隐私计算对教学过程、学习成果等数据进行联合分析,更客观全面地评估教育质量,为教育改革提供参考依据。
猜你喜欢
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...