金融湖仓一体应用

一体
环科技一体平台还提供全生命周期的数据管控能力,可以实现多模态数据以及元数据的统管控,同时支持统的多租户管理,可确保在一体平台上的租户从资源层、数据层、应用层等都能实现完整隔离。星环科技一体平台依托多模型数据管理平台,打破传统Hadoop+MPP混合架构,提供统资源管理、统存储管理、统计算引擎和统数据操作四层统架构,真正实现技术架构统。贯穿这四层架构,星

金融湖仓一体应用 更多内容

一体流批一体架构结合了数据和数据仓库的优势,并在此基础上实现了流处理和批处理的深度融合。以下是一体流批一体的几个主要优势和应用场景:实时响应与数据致性:流批一体架构能够实时处理数据流和高效利用。简化开发与运维:一体架构通过支持实时数据流处理和批处理,能够快速响应用户的查询请求,尤其适合于实时数据分析场景。此外,一体架构还能够自动构建索引和缓存,加速查询。数据多样性与成本可以降低数据存储和处理的成本,通过将数据按照不同的存储需求进行分类,可以实现成本和资源的优化控制,提高数据存储和处理的效率。应用场景:一体流批一体架构在多个场景下展现出亮点,包括流式数据计算、实时多维分析、流批数据复用等。控制:一体的技术架构可以保证数据致性,将不同数据源的数据集中存储在起,通过数据和数据仓库之间的数据同步与集成,可以保证数据的致性和准确性,避免了数据冗余和不致的问题。同时,一体的架构弹性扩展:通过统的计算引擎和调度系统,流批一体架构能够更高效地利用计算资源,避免资源的闲置和浪费,降低企业的IT成本。此外,存算分离架构允许企业根据业务需求动态调整存储和计算资源,实现资源的弹性扩展
一体流批一体架构结合了数据和数据仓库的优势,并在此基础上实现了流处理和批处理的深度融合。以下是一体流批一体的几个主要优势和应用场景:实时响应与数据致性:流批一体架构能够实时处理数据流和高效利用。简化开发与运维:一体架构通过支持实时数据流处理和批处理,能够快速响应用户的查询请求,尤其适合于实时数据分析场景。此外,一体架构还能够自动构建索引和缓存,加速查询。数据多样性与成本可以降低数据存储和处理的成本,通过将数据按照不同的存储需求进行分类,可以实现成本和资源的优化控制,提高数据存储和处理的效率。应用场景:一体流批一体架构在多个场景下展现出亮点,包括流式数据计算、实时多维分析、流批数据复用等。控制:一体的技术架构可以保证数据致性,将不同数据源的数据集中存储在起,通过数据和数据仓库之间的数据同步与集成,可以保证数据的致性和准确性,避免了数据冗余和不致的问题。同时,一体的架构弹性扩展:通过统的计算引擎和调度系统,流批一体架构能够更高效地利用计算资源,避免资源的闲置和浪费,降低企业的IT成本。此外,存算分离架构允许企业根据业务需求动态调整存储和计算资源,实现资源的弹性扩展
提取数据和生成数据洞见,提供端到端流式传输能力。存算分离:一体支持计算资源和存储资源的分离,允许垂直和水平横向弹性伸缩,按需调用计算资源,无常驻资源,确保针对多种工作负载进行弹性扩缩。BI应用直接访问:BI应用可以直接访问一体中的源数据,减少了数据重复和提高了效率。数据仓库建模方法:一体采用数据仓库的建模方法和技术,对企业的数据进行规范化和标准化处理,确保数据的质量和可靠性。实时性和时效性:一体注重数据的实时性和时效性,支持实时数据的采集和处理,为企业提供及时的数据分析和决策支持。一体种结合了数据和数据仓库优势的新型数据架构。以下是一体数据仓库的些关键特点和功能:统的数据存储和管理:一体提供了个统的平台,可以存储和管理高质量的结构化数据以及非结构化数据。它结合了数据仓库的规范化和数据的灵活性,使得数据可以在同个存储中进行操作,同时支持数据治理。低成本存储:一体利用数据的低成本存储特性,同时提供数据仓库的管理功能和工具,实现数据的统管理和共享。数据管理功能:一体支持数据管理功能,包括架构、数据治理、ETL流程和数据清理,以确保数据的致性、完整性和准确性。事务支持:一体提供ACID(原子性、致性、隔离性和持久性)属性的事务
行业资讯
数据一体
能力和数据容量。开放型:采用开放、标准化的存储格式,并提供丰富的API支持。应用场景:金融行业:一体架构能够帮助金融机构实现数据的统存储和管理,提高数据处理和分析的效率,支持风险评估、业务决策和数据一体种融合了数据和数据仓库优势的新型数据管理和分析架构。以下是它的些关键技术特点和应用场景:技术特点:存储与计算分离:一体架构采取存储计算分离的设计,使得存储和计算可以分别根据分析、实时查询和实时报表生成等应用场景。数据科学和机器学习:一体可以提供全面的数据支持,方便数据科学家和机器学习工程师进行模型训练和应用开发。业务智能和决策支持:通过一体,企业可以快速地获取全面自动化元数据采集。高可用性:一体架构使用云对象存储,具有高可用性和高耐用性。支持多种数据类型:包括结构化、半结构化和非结构化数据。数据可治理:在保证数据完整性的同时,具有健全的治理和审计机制,能够监管合规等场景。零售行业:通过一体架构,零售企业可以更高效地处理销售数据、库存数据、顾客行为数据等,为精准营销、库存管理、供应链优化等提供有力支持。制造业:在制造业中,一体架构可以帮助企业实现
行业资讯
一体
一体种融合了数据和数据仓库优势的新型数据管理和分析架构。以下是一体些关键技术和特点:存储与计算分离:一体架构采取存储计算分离的设计,使得存储和计算可以分别根据业务的需求进行独立打破数据孤岛,减少数据搬迁和数据致性问题。统元数据管理:支持异构数据的统元数据管理,实现端到端的数据链路的自动化元数据采集,支持全链路血缘,键式分析技术、业务、操作元数据详情。高可用性:一体架构使用云对象存储,具有高可用性和高耐用性。技术架构:一体的架构由存储层和计算层组成,计算层的数据来源于存储层。存储层主要由云存储、开放的文件格式和开放的表格式组成。支持事务致性:一体架构通过引入ACID事务特性,确保数据在实时处理过程中的致性和准确性。提供高并发实时处理能力:利用分布式计算和流处理技术,一体架构能够支持高并发的实时数据处理需求,满足企业对实时业务决策的需求。统数据存储:一体架构将数据和数据仓库统个平台上,实现数据的统存储和管理,降低数据冗余和复杂性。多元数据分析:支持多种数据分析工具和技术,如SQL、大数据处理框架等,以满足企业多样化的数据
行业资讯
一体
一体种融合了数据和数据仓库优势的新型数据管理和分析架构。以下是一体些关键技术和特点:存储与计算分离:一体架构采取存储计算分离的设计,使得存储和计算可以分别根据业务的需求进行独立打破数据孤岛,减少数据搬迁和数据致性问题。统元数据管理:支持异构数据的统元数据管理,实现端到端的数据链路的自动化元数据采集,支持全链路血缘,键式分析技术、业务、操作元数据详情。高可用性:一体架构使用云对象存储,具有高可用性和高耐用性。技术架构:一体的架构由存储层和计算层组成,计算层的数据来源于存储层。存储层主要由云存储、开放的文件格式和开放的表格式组成。支持事务致性:一体架构通过引入ACID事务特性,确保数据在实时处理过程中的致性和准确性。提供高并发实时处理能力:利用分布式计算和流处理技术,一体架构能够支持高并发的实时数据处理需求,满足企业对实时业务决策的需求。统数据存储:一体架构将数据和数据仓库统个平台上,实现数据的统存储和管理,降低数据冗余和复杂性。多元数据分析:支持多种数据分析工具和技术,如SQL、大数据处理框架等,以满足企业多样化的数据
提取数据和生成数据洞见,提供端到端流式传输能力。存算分离:一体支持计算资源和存储资源的分离,允许垂直和水平横向弹性伸缩,按需调用计算资源,无常驻资源,确保针对多种工作负载进行弹性扩缩。BI应用直接访问:BI应用可以直接访问一体中的源数据,减少了数据重复和提高了效率。数据仓库建模方法:一体采用数据仓库的建模方法和技术,对企业的数据进行规范化和标准化处理,确保数据的质量和可靠性。实时性和时效性:一体注重数据的实时性和时效性,支持实时数据的采集和处理,为企业提供及时的数据分析和决策支持。一体种结合了数据和数据仓库优势的新型数据架构。以下是一体数据仓库的些关键特点和功能:统的数据存储和管理:一体提供了个统的平台,可以存储和管理高质量的结构化数据以及非结构化数据。它结合了数据仓库的规范化和数据的灵活性,使得数据可以在同个存储中进行操作,同时支持数据治理。低成本存储:一体利用数据的低成本存储特性,同时提供数据仓库的管理功能和工具,实现数据的统管理和共享。数据管理功能:一体支持数据管理功能,包括架构、数据治理、ETL流程和数据清理,以确保数据的致性、完整性和准确性。事务支持:一体提供ACID(原子性、致性、隔离性和持久性)属性的事务
行业资讯
数据一体
数据一体种新型的数据架构,一体打通了数据仓库和数据,将数据仓库的高性能及管理能力与数据的灵活性融合了起来。这种架构可以在底层支持多种数据类型并存,实现数据间的相互共享,并通过统封装的接口进行访问。它还支持实时查询和分析,为企业进行数据治理带来了更多的便利性。数据一体的优势主要包括:存算分离:数据一体采用存储计算分离架构,可以根据业务特性动态调整和扩缩容,同时支持直接读取离线数数据,使系统负载均衡调度更加灵活,提高资源利用率,并降低成本。批流融合:数据一体从表格式层统流和批处理,减少存储资源消耗。同时,借助CDC能力,可以实现从数据入内建仓整个数据链路的批流融合,进步节省计算资源和开发成本。支持事务ACID:数据一体提供ACID保证数据写入致性,同时提供高读写并发能力以及快速更新和删除能力,可以极大地缩小数据库入仓的延迟。星环科技一体解决方案星环科技一体架构,打破数据、数据仓库、数据集市的边界,基于一体平台,所有人都可以访问实时的数据、历史的数据、原始的数据、加工过的数据,如业务分析师可以直接访问原始的数据,数据工程师
一体数据治理是确保数据一体架构中数据的准确性、致性和可靠性的关键。以下是一体数据治理的些核心组成部分和实践步骤:数据治理策略:数据治理策略是业务的数据治理操作模型,定义了组织如何计划指标:建立关键绩效指标(KPIs)和数据治理指标对于衡量任何数据治理部署的有效性至关重要。选择合适的KPIs和指标来支持数据治理目标。统的数据管理:一体架构需要个强大的数据治理框架来确保数据质量、元数据管理和血统追踪。数据一体特性:一体可以提供数据版本控制、治理、安全性和ACID属性。它支持在数据摄入阶段就进行数据校验和清洗,确保数据的准确性和致性。实现数据治理目标。它包括确保数据的准确性、致性和可信度,帮助数据用户快速找到高质量数据,提高生产力和决策速度。提高运营效率和降低成本:有效的数据治理可以为组织创建数据资产的单真实来源,防止数据扩散:创建数据治理策略需要考虑业务目标和系列运营因素,并规划如何实现以下步骤/任务:设定数据治理目标、获得高级管理团队和数据治理委员会的支持、建立数据治理委员会以创建相关政策和程序、雇佣或培训必要的
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...