基于知识图谱的数据检索

行业资讯
知识图谱技术
什么是知识图谱技术?知识图谱技术是指知识图谱建立和应用的技术,是融合认知计算、知识表示与推理、信息检索与抽取、自然语言处理与语义Web、数据挖掘与机器学习等方向的交叉研究。知识图谱技术以结构化的形式根据用户的查询找到相关的知识,并给予准确的答案。通过索引和检索知识图谱中的信息,问答系统可以提供更丰富、更深入的回答。智能助理:智能助理可以基于知识图谱实现更好的自然语言处理和对话系统。通过使用知识图谱,助理可以获取大量的背景知识,并基于此为用户提供个性化、针对性的服务。企业知识管理:知识图谱可以用于构建企业知识管理系统,帮助企业更好地整理、管理和应用内部知识和信息。金融风控和反欺诈:知识图谱描述客观世界中概念、实体及其关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。知识图谱技术的应用场景知识图谱技术的应用场景非常广泛,包括但不限于以下领域:搜索引擎:知识图谱可以帮助搜索引擎更好地理解用户查询的意图,提供更精确、全面的搜索结果。通过将查询关联到知识图谱中的实体和属性,搜索引擎可以给出更准确的答案和相关信息。问答系统:问答系统可以
基于知识图谱的数据检索 更多内容

行业资讯
知识图谱技术
什么是知识图谱技术?知识图谱技术是指知识图谱建立和应用的技术,是融合认知计算、知识表示与推理、信息检索与抽取、自然语言处理与语义Web、数据挖掘与机器学习等方向的交叉研究。知识图谱技术以结构化的形式根据用户的查询找到相关的知识,并给予准确的答案。通过索引和检索知识图谱中的信息,问答系统可以提供更丰富、更深入的回答。智能助理:智能助理可以基于知识图谱实现更好的自然语言处理和对话系统。通过使用知识图谱,助理可以获取大量的背景知识,并基于此为用户提供个性化、针对性的服务。企业知识管理:知识图谱可以用于构建企业知识管理系统,帮助企业更好地整理、管理和应用内部知识和信息。金融风控和反欺诈:知识图谱描述客观世界中概念、实体及其关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。知识图谱技术的应用场景知识图谱技术的应用场景非常广泛,包括但不限于以下领域:搜索引擎:知识图谱可以帮助搜索引擎更好地理解用户查询的意图,提供更精确、全面的搜索结果。通过将查询关联到知识图谱中的实体和属性,搜索引擎可以给出更准确的答案和相关信息。问答系统:问答系统可以

行业资讯
知识图谱生成工具
科技近期也推出了结合知识图谱、图数据库和向量大模型的问答系统,企业基于具体的行业知识语料,可快速构建更精通特定行业知识的领域大模型,打造具备高效人机交互的业务应用。在赋予大模型拥有“长期记忆”的同时知识图谱是一种用于组织和表示知识的图形数据结构。知识图谱将现实世界的实体、概念、关系和属性以图形化方式进行建模的技术。知识图谱可以帮助人们更好地理解和获取知识,从而进行智能推理、问题解答和决策支持等多种应用。知识图谱工具是用于创建、管理和查询知识图谱的软件工具。知识图谱工具通常提供一系列功能,包括知识图谱的建模、数据导入、查询与分析等。知识图谱工具可以帮助用户使用图形化界面或编程接口来操作和使用出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。知识图谱的目的在于将结构化数据、非结构化数据以及这些数据、实体之间的关联关系进行存储和表达。星环知识图谱,从而实现对知识图谱的有效管理和利用。星环知识图谱平台-Sophon星环科技在知识图谱领域深耕多年,有着深厚的技术沉淀和积累,自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识

行业资讯
知识图谱生成工具
科技近期也推出了结合知识图谱、图数据库和向量大模型的问答系统,企业基于具体的行业知识语料,可快速构建更精通特定行业知识的领域大模型,打造具备高效人机交互的业务应用。在赋予大模型拥有“长期记忆”的同时知识图谱是一种用于组织和表示知识的图形数据结构。知识图谱将现实世界的实体、概念、关系和属性以图形化方式进行建模的技术。知识图谱可以帮助人们更好地理解和获取知识,从而进行智能推理、问题解答和决策支持等多种应用。知识图谱工具是用于创建、管理和查询知识图谱的软件工具。知识图谱工具通常提供一系列功能,包括知识图谱的建模、数据导入、查询与分析等。知识图谱工具可以帮助用户使用图形化界面或编程接口来操作和使用出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。知识图谱的目的在于将结构化数据、非结构化数据以及这些数据、实体之间的关联关系进行存储和表达。星环知识图谱,从而实现对知识图谱的有效管理和利用。星环知识图谱平台-Sophon星环科技在知识图谱领域深耕多年,有着深厚的技术沉淀和积累,自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识

行业资讯
知识图谱平台
以及知识应用和发布,Sophon对于知识的全生命周期管理进行了全链路的支撑与管理,同时基于拖拉拽的零代码知识图谱操作大大降低了知识图谱分析的使用门槛。多模态数据处理平台:Sophon支持多源、多方式、多,所见即所得地拖拽出所需的实体和对应关联关系,完成图构建。同时,对特定场景,系统内置了蓝图和蓝图模板,用户只需将业务数据与蓝图模板做映射即可生成图谱。复杂图谱构建:针对复杂的知识图谱需求,如医药知识图谱星环知识图谱平台-Sophon星环知识图谱软件(Sophon)是一站式知识全生命周期的管理平台,是一款集知识的建模、抽取、融合、存储、计算、推理以及应用为一体的知识图谱产品。本平台支持低代码图谱构建、智能化知识抽取、多模态知识存储、分布式图计算以及多维度的图谱分析。Sophon能提供什么?简单图谱构建:针对关联关系简单的知识图谱需求,如单一渠道的风险分析,用户可以使用Sophon的蓝图定义模块ZenGraph,支持和多种数据进行通信,有效降低了图上分布式计算额外的数据传输消耗。多维度图谱分析:Sophon不仅支持所见即所得的交互式图谱查询与分析,而且支持基于自然语言的检索与推荐、智能问答

行业资讯
知识图谱生成工具
科技近期也推出了结合知识图谱、图数据库和向量大模型的问答系统,企业基于具体的行业知识语料,可快速构建更精通特定行业知识的领域大模型,打造具备高效人机交互的业务应用。在赋予大模型拥有“长期记忆”的同时知识图谱是一种用于组织和表示知识的图形数据结构。知识图谱将现实世界的实体、概念、关系和属性以图形化方式进行建模的技术。知识图谱可以帮助人们更好地理解和获取知识,从而进行智能推理、问题解答和决策支持等多种应用。知识图谱工具是用于创建、管理和查询知识图谱的软件工具。知识图谱工具通常提供一系列功能,包括知识图谱的建模、数据导入、查询与分析等。知识图谱工具可以帮助用户使用图形化界面或编程接口来操作和使用出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。知识图谱的目的在于将结构化数据、非结构化数据以及这些数据、实体之间的关联关系进行存储和表达。星环知识图谱,从而实现对知识图谱的有效管理和利用。星环知识图谱平台-Sophon星环科技在知识图谱领域深耕多年,有着深厚的技术沉淀和积累,自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识

行业资讯
领域知识图谱
领域知识图谱是面向某一特定领域的知识图谱,强调知识的深度,通常需要基于该行业的数据库进行构建。领域知识图谱可以帮助人们更好地理解某一特定领域的知识结构和内在联系,支持推理和分析,为研究和应用提供有,匹配问句实体,能够提供更准确的答案。辅助大数据分析:在数据分析与决策过程中,知识图谱可以帮助理清各个因素之间的内在联系,提供更准确的决策支持。推荐计算:知识图谱可以用于推荐系统,通过概念层匹配,对用户价值的参考。领域知识图谱的应用范围非常广泛,如:辅助搜索:知识图谱可以提供更精准的语义搜索,通过关键词扩展和实体链接,能够搜索到更全面的信息。辅助问答:知识图谱可以用于问答系统,通过对问题的语义解析行为进行分析,能够提供更个性化的推荐。可解释性人工智能:知识图谱可以帮助实现可解释性人工智能,通过对知识的表达和推理,能够更好地理解人工智能的决策过程。物联网设备互联:知识图谱可以帮助实现物联网设备的互联互通,通过统一的语义模型,能够更好地实现不同设备之间的信息交互。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算

行业资讯
如何基于行业通识知识建立行业知识图谱?
如何基于行业通识知识建立行业知识图谱?建立行业知识图谱需要深入了解特定行业的背景和知识,以下是基于行业通识知识建立行业知识图谱的基本步骤(实际操作中需根据具体的行业和数据具体情况做出相应的调整):明确行业领域:明确要构建哪个行业的知识图谱。例如,可以选择金融、医疗、零售、教育等行业。收集数据:收集有关该行业的相关数据,包括行业报告、研究论文、新闻文章、公司年报等。数据应尽可能全面,涵盖各种来源知识图谱。这包括添加新的实体、关系和属性,以及删除或修改旧的实体、关系和属性。应用开发:基于行业知识图谱,可以开发各种应用,如智能搜索、智能推荐、风险评估工具等。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选

行业资讯
如何基于行业通识知识建立行业知识图谱?
如何基于行业通识知识建立行业知识图谱?建立行业知识图谱需要深入了解特定行业的背景和知识,以下是基于行业通识知识建立行业知识图谱的基本步骤(实际操作中需根据具体的行业和数据具体情况做出相应的调整):明确行业领域:明确要构建哪个行业的知识图谱。例如,可以选择金融、医疗、零售、教育等行业。收集数据:收集有关该行业的相关数据,包括行业报告、研究论文、新闻文章、公司年报等。数据应尽可能全面,涵盖各种来源知识图谱。这包括添加新的实体、关系和属性,以及删除或修改旧的实体、关系和属性。应用开发:基于行业知识图谱,可以开发各种应用,如智能搜索、智能推荐、风险评估工具等。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选

行业资讯
多模态知识图谱的构建
:利用融合后的多模态数据和相关的义信息,构建多模态知识图谱的图结构。可以使用图数据库来存储和查询这个知识图谱。知识推理与应用:基于构建好的多模知识图谱,进行知识推理和应用,如信息检索、问题回答、图像视频多模态知识图谱的构建是指在知识图谱的基础上,融合多种模态的,如文本、图像、视频等,构建一个综合且丰富的知识图谱。这样的知识图谱能够更全面地表达和理解跨模态的数据关系,并能够支持更广泛的应用领域。下面是多模态知识图谱的构建过程的一般步骤:数据收集:收集多种模态的数据如文本、图像、视频等,并对数据进行预处理,如去除噪声、归一化等。实体识别与描述:利用自然语言处理技术对文本进行解析,识别实体并提取实体、特征融合等技术来实现。关系抽取与链接:通过自然语言处理和机器学习技术,从文本数据中提取实体之间的关系,并建立实体之间的链接。这个过程可以包括知识图谱的关系抽取、关系分类、关系链接等任务。知识图谱构建搜索等。多模态知识图谱的构建是一个复杂而庞大的任务,需要涉及多个领域的知识和技术。它需要有数据处理、自然语言处理、计算机视觉、知识图谱等方面的专业知识和技术支持。星环知识图谱平台
猜你喜欢
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...