保险公司数据要素分析

数据要素流通工具集
星环科技基于TDS和Sophon多个产品打造了星环数据要素流通工具集解决方案,为数据资源方和数据消费方提供一系列的数据安全防护和隐私计算的能力,在各方数据不出域的前提下,提高数据流通参与方在数据存储、传输、发布、分析和联合建模等各个环节的安全保障。

保险公司数据要素分析 更多内容

定价大数据分析帮助保险公司更精准地评估风险、制定保险产品价格。在传统的保险业务中,风险评估和定价主要依赖于历史数据和经验,难以全面、准确地反映被保险人的风险状况。大数据分析技术的应用,使得保险公司能够收集和分析更多维度的数据,从而更精准地评估风险。在健康险领域,保险公司可以通过分析客户的健康档案、医疗费用数据、生活习惯数据等,更准确地评估客户的健康风险,制定个性化的保险产品价格。在车险领域,通过分析数据进行分析,如购买行为、理赔行为、咨询行为等,保险公司可以深入了解客户的需求和偏好,为客户提供个性化的保险产品和服务。根据客户的年龄、职业、家庭状况等因素,为客户推荐适合的保险产品;根据客户的购买保险公司精准定位潜在客户,提高营销效果。通过分析客户的社交媒体数据、互联网行为数据等,发现潜在的保险需求,针对性地开展营销活动,提高营销的转化率。,保险行业的发展模式和服务方式正在经历深刻变革。数字化转型涵盖保险业务的各个环节,无论是前台业务的客户体验优化,中台业务的流程自动化与智能化,还是后台业务的数据分析与决策支持,都离不开数据的支撑。在这
定价大数据分析帮助保险公司更精准地评估风险、制定保险产品价格。在传统的保险业务中,风险评估和定价主要依赖于历史数据和经验,难以全面、准确地反映被保险人的风险状况。大数据分析技术的应用,使得保险公司能够收集和分析更多维度的数据,从而更精准地评估风险。在健康险领域,保险公司可以通过分析客户的健康档案、医疗费用数据、生活习惯数据等,更准确地评估客户的健康风险,制定个性化的保险产品价格。在车险领域,通过分析数据进行分析,如购买行为、理赔行为、咨询行为等,保险公司可以深入了解客户的需求和偏好,为客户提供个性化的保险产品和服务。根据客户的年龄、职业、家庭状况等因素,为客户推荐适合的保险产品;根据客户的购买保险公司精准定位潜在客户,提高营销效果。通过分析客户的社交媒体数据、互联网行为数据等,发现潜在的保险需求,针对性地开展营销活动,提高营销的转化率。,保险行业的发展模式和服务方式正在经历深刻变革。数字化转型涵盖保险业务的各个环节,无论是前台业务的客户体验优化,中台业务的流程自动化与智能化,还是后台业务的数据分析与决策支持,都离不开数据的支撑。在这
行业资讯
反欺诈分析
欺诈风控模型,保险公司可以有效地筛查潜在的虚假理赔案件。在线游戏平台的作弊行为检测在在线游戏平台中,作弊行为的出现会破坏游戏的公平性和用户体验。通过反欺诈风控模型,游戏公司可以实时检测玩家的行为数据反欺诈分析是一种利用技术手段来识别和预防欺诈行为的方法。它通过分析和比对数据以及利用机器学习和人工智能等技术,识别和预测潜在的欺诈行为,从而保护用户的利益。应用反欺诈分析被广泛应用于多个行业,尤其是平台的支付风险管理对于电商平台来说,支付环节的安全性至关重要。利用反欺诈风控模型,可以对每一笔支付交易进行分析,判断是否存在欺诈风险。保险行业的欺诈防控在保险行业,虚假理赔是一个普遍存在的风险。通过反,识别出不正常的游戏行为,如通过外挂进行作弊等。技术反欺诈分析技术涉及多个领域,包括数据挖掘、机器学习、统计学、数据库等。以下是一些关键技术:数据收集与预处理数据是风控模型构建的基础,收集的数据种类繁多进行转换、组合和优化,提取出有价值的特征。例如,通过分析用户的消费习惯、交易时间、支付方式等,可以为模型提供更加精准的输入数据。模型选择与训练风控模型的选择与训练是决定模型效果的核心部分。常见的反欺诈风
行业资讯
反欺诈分析
欺诈风控模型,保险公司可以有效地筛查潜在的虚假理赔案件。在线游戏平台的作弊行为检测在在线游戏平台中,作弊行为的出现会破坏游戏的公平性和用户体验。通过反欺诈风控模型,游戏公司可以实时检测玩家的行为数据反欺诈分析是一种利用技术手段来识别和预防欺诈行为的方法。它通过分析和比对数据以及利用机器学习和人工智能等技术,识别和预测潜在的欺诈行为,从而保护用户的利益。应用反欺诈分析被广泛应用于多个行业,尤其是平台的支付风险管理对于电商平台来说,支付环节的安全性至关重要。利用反欺诈风控模型,可以对每一笔支付交易进行分析,判断是否存在欺诈风险。保险行业的欺诈防控在保险行业,虚假理赔是一个普遍存在的风险。通过反,识别出不正常的游戏行为,如通过外挂进行作弊等。技术反欺诈分析技术涉及多个领域,包括数据挖掘、机器学习、统计学、数据库等。以下是一些关键技术:数据收集与预处理数据是风控模型构建的基础,收集的数据种类繁多进行转换、组合和优化,提取出有价值的特征。例如,通过分析用户的消费习惯、交易时间、支付方式等,可以为模型提供更加精准的输入数据。模型选择与训练风控模型的选择与训练是决定模型效果的核心部分。常见的反欺诈风
行业资讯
反欺诈分析
欺诈风控模型,保险公司可以有效地筛查潜在的虚假理赔案件。在线游戏平台的作弊行为检测在在线游戏平台中,作弊行为的出现会破坏游戏的公平性和用户体验。通过反欺诈风控模型,游戏公司可以实时检测玩家的行为数据反欺诈分析是一种利用技术手段来识别和预防欺诈行为的方法。它通过分析和比对数据以及利用机器学习和人工智能等技术,识别和预测潜在的欺诈行为,从而保护用户的利益。应用反欺诈分析被广泛应用于多个行业,尤其是平台的支付风险管理对于电商平台来说,支付环节的安全性至关重要。利用反欺诈风控模型,可以对每一笔支付交易进行分析,判断是否存在欺诈风险。保险行业的欺诈防控在保险行业,虚假理赔是一个普遍存在的风险。通过反,识别出不正常的游戏行为,如通过外挂进行作弊等。技术反欺诈分析技术涉及多个领域,包括数据挖掘、机器学习、统计学、数据库等。以下是一些关键技术:数据收集与预处理数据是风控模型构建的基础,收集的数据种类繁多进行转换、组合和优化,提取出有价值的特征。例如,通过分析用户的消费习惯、交易时间、支付方式等,可以为模型提供更加精准的输入数据。模型选择与训练风控模型的选择与训练是决定模型效果的核心部分。常见的反欺诈风
行业资讯
反欺诈分析
欺诈风控模型,保险公司可以有效地筛查潜在的虚假理赔案件。在线游戏平台的作弊行为检测在在线游戏平台中,作弊行为的出现会破坏游戏的公平性和用户体验。通过反欺诈风控模型,游戏公司可以实时检测玩家的行为数据反欺诈分析是一种利用技术手段来识别和预防欺诈行为的方法。它通过分析和比对数据以及利用机器学习和人工智能等技术,识别和预测潜在的欺诈行为,从而保护用户的利益。应用反欺诈分析被广泛应用于多个行业,尤其是平台的支付风险管理对于电商平台来说,支付环节的安全性至关重要。利用反欺诈风控模型,可以对每一笔支付交易进行分析,判断是否存在欺诈风险。保险行业的欺诈防控在保险行业,虚假理赔是一个普遍存在的风险。通过反,识别出不正常的游戏行为,如通过外挂进行作弊等。技术反欺诈分析技术涉及多个领域,包括数据挖掘、机器学习、统计学、数据库等。以下是一些关键技术:数据收集与预处理数据是风控模型构建的基础,收集的数据种类繁多进行转换、组合和优化,提取出有价值的特征。例如,通过分析用户的消费习惯、交易时间、支付方式等,可以为模型提供更加精准的输入数据。模型选择与训练风控模型的选择与训练是决定模型效果的核心部分。常见的反欺诈风
可信数据空间服务公司数据流通的守护者在数字经济时代,数据已经成为推动社会进步的核心要素。然而,数据孤岛、隐私泄露、信任缺失等问题严重制约了数据要素价值的充分释放。可信数据空间服务公司应运而生,为前提下进行反欺诈分析;在政务领域,它可以实现跨部门数据共享,提高政府服务效率;在工业领域,它可以促进产业链上下游的数据协同,推动智能制造发展。展望未来,随着数据要素市场化进程的加快,可信数据空间服务公司将发挥越来越重要的作用。它们不仅是数据流通的基础设施提供者,更是数字经济发展的推动者。这类公司的兴起,标志着数据要素市场化进入了一个新阶段,将为数字经济高质量发展提供坚实支撑。解决这些难题提供了创新性解决方案。可信数据空间服务公司是专门提供数据安全流通服务的新型科技企业。这类公司通过构建安全可控的数据共享环境,为数据提供方和使用方搭建信任桥梁。它们运用区块链、隐私计算、数据加密等前沿技术,确保数据在流通过程中的安全性、完整性和可追溯性。在技术架构方面,可信数据空间服务公司采用分布式存储、多方安全计算、联邦学习等技术方案。这些技术确保了数据"可用不可见",即在保护数据隐私的
10月19日,“星火燎原,智慧点金——2018星环科技银行+保险行业高峰论坛”于苏州同里拉下帷幕,在这座素有“东方小威尼斯”之誉的江南古镇,与会嘉宾非常热情地一路相随。活动现场,各大银行及保险公司、交通等行业,推动诸多企业实现数字化转型。04、太平保险-大数据建设经验分享太平金科数据分析平台负责人许崇涛认为,传统保险行业在大数据建设过程面临以下6大挑战:数据量增长迅速、数据时效性要求高、用户数多、中国银行齐聚一堂,并围绕“大数据3.0时代,如何建设银行+保险数据平台”这一主题进行圆桌对话。几大银行+保险前沿公司数据洞察、数据关联、数据治理、模型构建、数据应用诸多角度进行了经验分享。通过搭建大数据现身说法,分享银行、保险行业的成功案例,更有星环科技新产品介绍和前沿技术分享,与会嘉宾满载而归。01、大数据技术发展趋势介绍星环科技创始人、CEO孙元浩率先登台,为大家解析了大数据技术发展趋势。大数据3.0时代正在到来,大数据时代的数据分析应从构建数仓或者BI系统的传统分析向探索性数据分析转变,数据管理和分析能力作为企业级别的核心维度指标,可以有效的驱动智能化的业务决策流程。针对大数据时代的5个技术
行业资讯
反欺诈分析
欺诈风控模型,保险公司可以有效地筛查潜在的虚假理赔案件。在线游戏平台的作弊行为检测在在线游戏平台中,作弊行为的出现会破坏游戏的公平性和用户体验。通过反欺诈风控模型,游戏公司可以实时检测玩家的行为数据反欺诈分析是一种利用技术手段来识别和预防欺诈行为的方法。它通过分析和比对数据以及利用机器学习和人工智能等技术,识别和预测潜在的欺诈行为,从而保护用户的利益。应用反欺诈分析被广泛应用于多个行业,尤其是平台的支付风险管理对于电商平台来说,支付环节的安全性至关重要。利用反欺诈风控模型,可以对每一笔支付交易进行分析,判断是否存在欺诈风险。保险行业的欺诈防控在保险行业,虚假理赔是一个普遍存在的风险。通过反,识别出不正常的游戏行为,如通过外挂进行作弊等。技术反欺诈分析技术涉及多个领域,包括数据挖掘、机器学习、统计学、数据库等。以下是一些关键技术:数据收集与预处理数据是风控模型构建的基础,收集的数据种类繁多进行转换、组合和优化,提取出有价值的特征。例如,通过分析用户的消费习惯、交易时间、支付方式等,可以为模型提供更加精准的输入数据。模型选择与训练风控模型的选择与训练是决定模型效果的核心部分。常见的反欺诈风
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...