大数据仓库平台
星环数据仓库解决方案具备超高性能、高可扩展、极简易用、高性价比等特性。面对高速增长的数据规模,传统的数据仓库负荷严重超出。不扩容会影响性能与稳定性,但是扩容却十分昂贵。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。
大数据仓库平台 更多内容

行业资讯
大数据仓库
大数据仓库是一个用于存储、管理和分析大量数据的集中式系统,它是传统数据仓库在大数据时代的演进和扩展,具有以下特点和优势:数据存储海量数据处理能力:能够容纳和处理海量的结构化、半结构化以及非结构化数据社交媒体、物联网设备等,将这些分散的数据整合到一个统一的数据仓库中,消除数据孤岛,形成全面、一致的数据视图。数据清洗与转换:在数据集成过程中,对数据进行清洗、转换和标准化处理,去除噪声数据、纠正错误,例如通过机器学习算法对客户数据进行聚类分析,实现精准营销。决策支持:为企业的决策制定提供有力支持,企业管理层可以基于数据仓库中的数据分析结果,做出更明智、更科学的决策,例如制定市场营销策略、优化产品设计、调整生产计划等。架构与可扩展性分层架构:通常采用多层架构,如操作数据存储(ODS)、企业数据仓库(EDW)、数据集市等,各层之间分工明确,便于数据的管理、维护和使用。弹性可扩展:能够根据企业数据量的增长和业务需求的变化,灵活地扩展计算资源和存储资源,实现水平扩展和垂直扩展,确保系统的性能和可用性不受影响。元数据管理元数据存储:对数据仓库中的数据进行元数据管理,记录数据的来源、定义、转换规则

行业资讯
大数据仓库
大数据仓库是一个用于存储、管理和分析大量数据的集中式系统,它是传统数据仓库在大数据时代的演进和扩展,具有以下特点和优势:数据存储海量数据处理能力:能够容纳和处理海量的结构化、半结构化以及非结构化数据社交媒体、物联网设备等,将这些分散的数据整合到一个统一的数据仓库中,消除数据孤岛,形成全面、一致的数据视图。数据清洗与转换:在数据集成过程中,对数据进行清洗、转换和标准化处理,去除噪声数据、纠正错误,例如通过机器学习算法对客户数据进行聚类分析,实现精准营销。决策支持:为企业的决策制定提供有力支持,企业管理层可以基于数据仓库中的数据分析结果,做出更明智、更科学的决策,例如制定市场营销策略、优化产品设计、调整生产计划等。架构与可扩展性分层架构:通常采用多层架构,如操作数据存储(ODS)、企业数据仓库(EDW)、数据集市等,各层之间分工明确,便于数据的管理、维护和使用。弹性可扩展:能够根据企业数据量的增长和业务需求的变化,灵活地扩展计算资源和存储资源,实现水平扩展和垂直扩展,确保系统的性能和可用性不受影响。元数据管理元数据存储:对数据仓库中的数据进行元数据管理,记录数据的来源、定义、转换规则

行业资讯
基于大数据平台的数据仓库
基于大数据平台的数据仓库是指将大量的数据存储在分布式的计算集群中,通过数据处理与计算技术提取有价值的信息,用于分析与决策。其主要包括以下几个部分:数据采集:通过多种数据采集方式获取各种数据源的数据、分析数据。数据可视化:通过视化工具将数据转化为可读的图表、报表等形式,用于数据展示。基于大数据平台的数据仓库可以应用于各种领域,如电商、金融、医疗、物流等,能够从庞杂的数据中提取出有用的信息,辅助企业做出决策、提高运营效率、降低成本等。星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移可靠的数据与服务:提供双机热备。保障数据可靠,服务可用。能够实现即时灾难恢复,通过数据仓库的需求。强大的数据处理能力:采用向量化加速,高性能的分析计算,提高执行效率。提供超强的并行计算和线性可扩展能力。具有PB级数据处理能力,提供强大的批处理能力,无需预先建模即可进行秒级交互分析

行业资讯
基于大数据平台的数据仓库
基于大数据平台的数据仓库是指将大量的数据存储在分布式的计算集群中,通过数据处理与计算技术提取有价值的信息,用于分析与决策。其主要包括以下几个部分:数据采集:通过多种数据采集方式获取各种数据源的数据、分析数据。数据可视化:通过视化工具将数据转化为可读的图表、报表等形式,用于数据展示。基于大数据平台的数据仓库可以应用于各种领域,如电商、金融、医疗、物流等,能够从庞杂的数据中提取出有用的信息,辅助企业做出决策、提高运营效率、降低成本等。星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移可靠的数据与服务:提供双机热备。保障数据可靠,服务可用。能够实现即时灾难恢复,通过数据仓库的需求。强大的数据处理能力:采用向量化加速,高性能的分析计算,提高执行效率。提供超强的并行计算和线性可扩展能力。具有PB级数据处理能力,提供强大的批处理能力,无需预先建模即可进行秒级交互分析

行业资讯
基于大数据平台的数据仓库
基于大数据平台的数据仓库是指将大量的数据存储在分布式的计算集群中,通过数据处理与计算技术提取有价值的信息,用于分析与决策。其主要包括以下几个部分:数据采集:通过多种数据采集方式获取各种数据源的数据、分析数据。数据可视化:通过视化工具将数据转化为可读的图表、报表等形式,用于数据展示。基于大数据平台的数据仓库可以应用于各种领域,如电商、金融、医疗、物流等,能够从庞杂的数据中提取出有用的信息,辅助企业做出决策、提高运营效率、降低成本等。星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移可靠的数据与服务:提供双机热备。保障数据可靠,服务可用。能够实现即时灾难恢复,通过数据仓库的需求。强大的数据处理能力:采用向量化加速,高性能的分析计算,提高执行效率。提供超强的并行计算和线性可扩展能力。具有PB级数据处理能力,提供强大的批处理能力,无需预先建模即可进行秒级交互分析

行业资讯
基于大数据平台的数据仓库
基于大数据平台的数据仓库是指将大量的数据存储在分布式的计算集群中,通过数据处理与计算技术提取有价值的信息,用于分析与决策。其主要包括以下几个部分:数据采集:通过多种数据采集方式获取各种数据源的数据、分析数据。数据可视化:通过视化工具将数据转化为可读的图表、报表等形式,用于数据展示。基于大数据平台的数据仓库可以应用于各种领域,如电商、金融、医疗、物流等,能够从庞杂的数据中提取出有用的信息,辅助企业做出决策、提高运营效率、降低成本等。星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移可靠的数据与服务:提供双机热备。保障数据可靠,服务可用。能够实现即时灾难恢复,通过数据仓库的需求。强大的数据处理能力:采用向量化加速,高性能的分析计算,提高执行效率。提供超强的并行计算和线性可扩展能力。具有PB级数据处理能力,提供强大的批处理能力,无需预先建模即可进行秒级交互分析

行业资讯
基于大数据平台的数据仓库
基于大数据平台的数据仓库是指将大量的数据存储在分布式的计算集群中,通过数据处理与计算技术提取有价值的信息,用于分析与决策。其主要包括以下几个部分:数据采集:通过多种数据采集方式获取各种数据源的数据、分析数据。数据可视化:通过视化工具将数据转化为可读的图表、报表等形式,用于数据展示。基于大数据平台的数据仓库可以应用于各种领域,如电商、金融、医疗、物流等,能够从庞杂的数据中提取出有用的信息,辅助企业做出决策、提高运营效率、降低成本等。星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移可靠的数据与服务:提供双机热备。保障数据可靠,服务可用。能够实现即时灾难恢复,通过数据仓库的需求。强大的数据处理能力:采用向量化加速,高性能的分析计算,提高执行效率。提供超强的并行计算和线性可扩展能力。具有PB级数据处理能力,提供强大的批处理能力,无需预先建模即可进行秒级交互分析

行业资讯
数据仓库产品
星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的,提供大规模数据下高效灵活的存储和分析能力便捷的迁移:对于大量存量SQL与存储过程无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移度的复杂关联统计等功能分布式事务保障:支持完整4种事务隔离级别,保障事务在分布式系统下正常运转,高吞吐的,确保数据强一致,高可用的事务保障星环数据仓库方案优势强大的数据处理能力:采用向量化加速,高性能效率:提供全套的数仓开发工具,支持数据整合、工作流调度、数据治理以及报表工具等数据业务,提供可视化工具进行数据特征分析,探索数据间关系,大大提高数据仓库的开发效率丰富的数据类型的支持:支持多种类型的数据需求。多模型数据库:支持关系型、搜索、文本、对象等数据模型支持超大规模集群:天然分布式架构,集群节点规模无上限,数据存储容量随节点规模线性扩容,可支持2000+节点集群完整的SQL支持:支持完整的SQL

行业资讯
数据仓库及数据开发平台
解锁数据力量:深入数据仓库与数据开发平台在数字化转型的浪潮中,数据已成为企业的核心资产,驱动着业务决策、创新发展与竞争优势的构建。数据仓库与数据开发平台作为数据管理与价值挖掘的关键工具,正深刻影响、完整性和可用性。数据集市是数据仓库的子集,针对特定部门或业务主题构建,更专注于满足局部业务需求,直接面向应用,提高数据使用效率。解析数据开发平台:数据价值的催化剂功能与能力概述数据开发平台是一站式如,利用其强大的分布式计算能力,对大规模数据进行高效的清洗、转换、分析等操作。同时,借助元数据管理技术,对数据的来源、处理过程、存储位置等信息进行管理,确保数据的可追溯性和一致性。数据仓库与数据开发平台的协同共进数据仓库为数据开发平台提供了稳定的数据源和数据存储基础,数据开发平台则为数据仓库的数据更新、处理和价值挖掘提供了高效的工具和手段。两者相互协作,形成一个完整的数据管理与价值创造体系。企业在进行数据管理和数字化转型过程中,应充分发挥数据仓库和数据开发平台的优势,实现数据的高效存储、处理和应用。通过构建完善的数据仓库和先进的数据开发平台,企业能够更好地驾驭数据这一核心资产,在激烈的市场竞争中脱颖而出,实现可持续发展。
猜你喜欢
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...