大模型人工智能机器学习

人工智能模型是指在机器学习人工智能领域中,具有规模参数和复杂计算结构的模型。这些模型基于深度神经网络构建,参数量通常达到数十亿甚至数千亿个。它们能够处理规模数据,执行复杂的任务,如自然语言处理、计算机视觉和语音识别等。模型的发展历程显示了其在处理复杂问题上的优势。随着数据量的增加和模型复杂度的提高,传统的机器学习方法逐渐显得力不从心。而模型凭借其强大的计算能力和智能决策能力,在各个领域取得了显著成果。以星环科技的无涯为例,这是一个拥有数十亿参数的规模语言模型。通过在海量文本数据上进行无监督学习,无涯能够理解和生成人类语言,实现多种自然语言处理任务,包括但不限于文本生成、问答和翻译。星环科技无涯·问知InfinityIntelligence,是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

大模型人工智能机器学习 更多内容

人工智能模型是指在机器学习人工智能领域中,具有规模参数和复杂计算结构的模型。这些模型基于深度神经网络构建,参数量通常达到数十亿甚至数千亿个。它们能够处理规模数据,执行复杂的任务,如自然语言处理、计算机视觉和语音识别等。模型的发展历程显示了其在处理复杂问题上的优势。随着数据量的增加和模型复杂度的提高,传统的机器学习方法逐渐显得力不从心。而模型凭借其强大的计算能力和智能决策能力,在各个领域取得了显著成果。以星环科技的无涯为例,这是一个拥有数十亿参数的规模语言模型。通过在海量文本数据上进行无监督学习,无涯能够理解和生成人类语言,实现多种自然语言处理任务,包括但不限于文本生成、问答和翻译。星环科技无涯·问知InfinityIntelligence,是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。
模型人工智能(AI)虽然相关,但有不同的概念和作用。什么是模型模型通常指的是具有庞大参数和复杂结构的机器学习模型,特别是在深度学习中。通过海量数据训练,能够处理复杂任务,如语言生成、图像识别等。什么是人工智能(AI)?人工智能(AI)广义上指的是使机器表现出智能行为的技术和理论,包括但不限于机器学习数据分析和专家系统。人工智能(AI)涵盖的范围较大,除了模型,还包括算法设计、神经网络、统计学习、自然语言处理、机器人学等多个子领域。目标是实现机器模拟和执行人类智能行为,如理解语言、学习、推理和规划。模型人工智能的区别简而言之,模型人工智能(AI)中深度学习的一部分,专注于复杂任务的高级模型人工智能(AI)是涵盖更广的领域,包含各种实现智能行为的方法和技术。
模型人工智能(AI)虽然相关,但有不同的概念和作用。什么是模型模型通常指的是具有庞大参数和复杂结构的机器学习模型,特别是在深度学习中。通过海量数据训练,能够处理复杂任务,如语言生成、图像识别等。什么是人工智能(AI)?人工智能(AI)广义上指的是使机器表现出智能行为的技术和理论,包括但不限于机器学习数据分析和专家系统。人工智能(AI)涵盖的范围较大,除了模型,还包括算法设计、神经网络、统计学习、自然语言处理、机器人学等多个子领域。目标是实现机器模拟和执行人类智能行为,如理解语言、学习、推理和规划。模型人工智能的区别简而言之,模型人工智能(AI)中深度学习的一部分,专注于复杂任务的高级模型人工智能(AI)是涵盖更广的领域,包含各种实现智能行为的方法和技术。
模型人工智能(AI)的一个组成部分,特别地,它是深度学习领域中的一种技术。人工智能是一个更广泛的概念,它涵盖了使计算机系统能够执行通常需要人类智能的任务的所有技术和方法。这包括但不限于机器学习、深度学习、专家系统、遗传算法等。模型,专注于处理自然语言处理、计算机视觉和语音识别等复杂任务。它们通过在规模数据集上进行训练来学习复杂的模式和特征。相比之下,人工智能的范围更广,不仅包括模型的应用,还涵盖了其他各种智能技术的应用,如机器人技术、游戏中的智能体控制、自动化决策系统等。星环科技无涯·问知(InfinityIntelligence),是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。
所谓人工智能模型,即参数规模非常庞大的人工神经网络。由于其参数数量足够庞大,模型在许多任务上表现非常优秀。由于模型经过了大量数据的训练,学习了众多的知识,因此具有非常好的通用性。我们在日常生活中常常使用各种人工智能产品,如人脸识别和对话机器人等,这些都是基于模型开发的。模型的容量超大,能力强,能够将所有任务合并在一个模型中,提供多重任务的支撑。模型展现了通用人工智能前景非常广阔的前景可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二,帮助客户将原型的语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的语言模型模型的持续
模型人工智能(AI)的一个组成部分,特别地,它是深度学习领域中的一种技术。人工智能是一个更广泛的概念,它涵盖了使计算机系统能够执行通常需要人类智能的任务的所有技术和方法。这包括但不限于机器学习、深度学习、专家系统、遗传算法等。模型,专注于处理自然语言处理、计算机视觉和语音识别等复杂任务。它们通过在规模数据集上进行训练来学习复杂的模式和特征。相比之下,人工智能的范围更广,不仅包括模型的应用,还涵盖了其他各种智能技术的应用,如机器人技术、游戏中的智能体控制、自动化决策系统等。星环科技无涯·问知(InfinityIntelligence),是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。
软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台强大的支持。特别是在近年来,由于深度学习技术的不断发展和计算硬件的进一步升级,模型的规模和性能有了进一步的提升。人工智能模型是目前人工智能领域的一个重要研究方向,其已经在各个领域展现出强大的应用人工智能模型是目前人工智能领域的一个重要研究领域。模型是指由数百亿甚至数万亿个参数组成的神经网络模型,这些模型能够通过海量数据进行训练,从而拥有强大的数据处理能力和精确的预测能力。在许多领域,如自然语言处理、计算机视觉和自动驾驶等,模型已经成为解决各种问题的“法宝”。人工智能模型的研究与发展伴随着计算硬件的快速进步。在过去的几十年中,计算硬件的性能不断提高,从而为模型的训练和应用提供了潜力。未来,随着计算硬件的进一步升级和技术的不断创新,模型的应用前景将更加广阔。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础
模型人工智能(AI)的一个组成部分,特别地,它是深度学习领域中的一种技术。人工智能是一个更广泛的概念,它涵盖了使计算机系统能够执行通常需要人类智能的任务的所有技术和方法。这包括但不限于机器学习、深度学习、专家系统、遗传算法等。模型,专注于处理自然语言处理、计算机视觉和语音识别等复杂任务。它们通过在规模数据集上进行训练来学习复杂的模式和特征。相比之下,人工智能的范围更广,不仅包括模型的应用,还涵盖了其他各种智能技术的应用,如机器人技术、游戏中的智能体控制、自动化决策系统等。星环科技无涯·问知(InfinityIntelligence),是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。
所谓人工智能模型,即参数规模非常庞大的人工神经网络。由于其参数数量足够庞大,模型在许多任务上表现非常优秀。由于模型经过了大量数据的训练,学习了众多的知识,因此具有非常好的通用性。我们在日常生活中常常使用各种人工智能产品,如人脸识别和对话机器人等,这些都是基于模型开发的。模型的容量超大,能力强,能够将所有任务合并在一个模型中,提供多重任务的支撑。模型展现了通用人工智能前景非常广阔的前景可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二,帮助客户将原型的语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的语言模型模型的持续
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。