大模型开发系统

解锁模型开发管理平台:AI时代的“魔法工坊”模型开发管理平台介绍概念:模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行模型开发、训练、优化、部署以及后续的管理维护工作。它整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源模型开发者无需从头构建模型,可选择合适的预训练模型进行用于语言模型的提示词;支持检索增强生成,智能体开发等,助力构建更智能的模型应用。模型运维管理:对模型进行全生命周期管理,包括模型版本控制、性能监测、故障诊断与修复等,确保模型在生产环境中的稳定运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在不同工具和平台间切换的时间,自动化的流程和丰富的模板,进一步缩短开发周期。保障模型质量:完善的模型评估和优化机制,以及对算力资源的合理调配,有助于训练出高性能、高稳定性的模型。应用场景智能客服:利用

大模型开发系统 更多内容

模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于、移动设备、边缘计算设备等,满足不同应用场景的部署需求。模型服务化:将模型封装为可调用的服务接口,方便与其他应用系统进行集成,实现模型的在线推理和预测功能。技术架构基础设施层:由计算资源(如CPU
模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于、移动设备、边缘计算设备等,满足不同应用场景的部署需求。模型服务化:将模型封装为可调用的服务接口,方便与其他应用系统进行集成,实现模型的在线推理和预测功能。技术架构基础设施层:由计算资源(如CPU
模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于、移动设备、边缘计算设备等,满足不同应用场景的部署需求。模型服务化:将模型封装为可调用的服务接口,方便与其他应用系统进行集成,实现模型的在线推理和预测功能。技术架构基础设施层:由计算资源(如CPU
模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于、移动设备、边缘计算设备等,满足不同应用场景的部署需求。模型服务化:将模型封装为可调用的服务接口,方便与其他应用系统进行集成,实现模型的在线推理和预测功能。技术架构基础设施层:由计算资源(如CPU
解锁模型开发管理平台:AI时代的“魔法工坊”模型开发管理平台介绍概念:模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行模型开发、训练、优化、部署以及后续的管理维护工作。它整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源模型开发者无需从头构建模型,可选择合适的预训练模型进行用于语言模型的提示词;支持检索增强生成,智能体开发等,助力构建更智能的模型应用。模型运维管理:对模型进行全生命周期管理,包括模型版本控制、性能监测、故障诊断与修复等,确保模型在生产环境中的稳定运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在不同工具和平台间切换的时间,自动化的流程和丰富的模板,进一步缩短开发周期。保障模型质量:完善的模型评估和优化机制,以及对算力资源的合理调配,有助于训练出高性能、高稳定性的模型。应用场景智能客服:利用
解锁模型开发管理平台:AI时代的“魔法工坊”模型开发管理平台介绍概念:模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行模型开发、训练、优化、部署以及后续的管理维护工作。它整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源模型开发者无需从头构建模型,可选择合适的预训练模型进行用于语言模型的提示词;支持检索增强生成,智能体开发等,助力构建更智能的模型应用。模型运维管理:对模型进行全生命周期管理,包括模型版本控制、性能监测、故障诊断与修复等,确保模型在生产环境中的稳定运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在不同工具和平台间切换的时间,自动化的流程和丰富的模板,进一步缩短开发周期。保障模型质量:完善的模型评估和优化机制,以及对算力资源的合理调配,有助于训练出高性能、高稳定性的模型。应用场景智能客服:利用
模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于、移动设备、边缘计算设备等,满足不同应用场景的部署需求。模型服务化:将模型封装为可调用的服务接口,方便与其他应用系统进行集成,实现模型的在线推理和预测功能。技术架构基础设施层:由计算资源(如CPU
模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于、移动设备、边缘计算设备等,满足不同应用场景的部署需求。模型服务化:将模型封装为可调用的服务接口,方便与其他应用系统进行集成,实现模型的在线推理和预测功能。技术架构基础设施层:由计算资源(如CPU
模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于、移动设备、边缘计算设备等,满足不同应用场景的部署需求。模型服务化:将模型封装为可调用的服务接口,方便与其他应用系统进行集成,实现模型的在线推理和预测功能。技术架构基础设施层:由计算资源(如CPU
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。