hadoop大数据平台数据加密

星环大数据平台数据备份恢复软件
星环数据灾备工具Transwarp Backup和配套的解决方案,帮助大数据平台客户在遇到特殊情况时,能够在特定时间要求内将平台数据恢复至既定时间点。Backup横向支持了所有星环产品组件,纵向出色地控制了每个产品组件的数据同步备份代价。此外,Backup已迭代支持数据上云(TDH-TDC)、跨平台数据迁移和备份的场景(CDH-TDH)。

hadoop大数据平台数据加密 更多内容

打破数据孤岛:多业务平台数据集成的奥秘多业务平台数据集成是什么在当今这个数字化程度日益加深的时代,数据已然成为了企业实现成功运营与创新发展的核心资产。随着企业业务的不断拓展以及数字化转型的持续推进“数据孤岛”。多业务平台数据集成,正是打破这些“数据孤岛”的有力武器。它指的是将来自多个不同业务平台数据,整合到一个统一的数据存储库或环境中的过程。在这个过程中,需要对不同格式、结构和语义的数据进行抽取、清洗、转换和加载,使其能够在一个统一的框架下进行管理和分析,实现数据的共享与业务的协同。多业务平台数据集成的重要性多业务平台数据集成对企业发展至关重要,它能解决数据孤岛问题,整合分散数据,为企业运营屡见不鲜。由于不同系统的数据更新时间和方式存在差异,很可能会出现同一客户在不同系统中的信息不一致的现象。而多业务平台数据集成能够有效地消除这些问题。在集成过程中,通过数据清洗技术,可以识别并删除重复的数据,为企业的决策提供了可靠的数据基础。(二)优化业务流程多业务平台数据集成能为企业提供全面的业务视角,打破部门之间的信息壁垒。以一家制造企业为例,在没有进行数据集成之前,生产部门只了解生产线上的产品数量
打破数据孤岛:多业务平台数据集成的奥秘多业务平台数据集成是什么在当今这个数字化程度日益加深的时代,数据已然成为了企业实现成功运营与创新发展的核心资产。随着企业业务的不断拓展以及数字化转型的持续推进“数据孤岛”。多业务平台数据集成,正是打破这些“数据孤岛”的有力武器。它指的是将来自多个不同业务平台数据,整合到一个统一的数据存储库或环境中的过程。在这个过程中,需要对不同格式、结构和语义的数据进行抽取、清洗、转换和加载,使其能够在一个统一的框架下进行管理和分析,实现数据的共享与业务的协同。多业务平台数据集成的重要性多业务平台数据集成对企业发展至关重要,它能解决数据孤岛问题,整合分散数据,为企业运营屡见不鲜。由于不同系统的数据更新时间和方式存在差异,很可能会出现同一客户在不同系统中的信息不一致的现象。而多业务平台数据集成能够有效地消除这些问题。在集成过程中,通过数据清洗技术,可以识别并删除重复的数据,为企业的决策提供了可靠的数据基础。(二)优化业务流程多业务平台数据集成能为企业提供全面的业务视角,打破部门之间的信息壁垒。以一家制造企业为例,在没有进行数据集成之前,生产部门只了解生产线上的产品数量
打破数据孤岛:多业务平台数据集成的奥秘多业务平台数据集成是什么在当今这个数字化程度日益加深的时代,数据已然成为了企业实现成功运营与创新发展的核心资产。随着企业业务的不断拓展以及数字化转型的持续推进“数据孤岛”。多业务平台数据集成,正是打破这些“数据孤岛”的有力武器。它指的是将来自多个不同业务平台数据,整合到一个统一的数据存储库或环境中的过程。在这个过程中,需要对不同格式、结构和语义的数据进行抽取、清洗、转换和加载,使其能够在一个统一的框架下进行管理和分析,实现数据的共享与业务的协同。多业务平台数据集成的重要性多业务平台数据集成对企业发展至关重要,它能解决数据孤岛问题,整合分散数据,为企业运营屡见不鲜。由于不同系统的数据更新时间和方式存在差异,很可能会出现同一客户在不同系统中的信息不一致的现象。而多业务平台数据集成能够有效地消除这些问题。在集成过程中,通过数据清洗技术,可以识别并删除重复的数据,为企业的决策提供了可靠的数据基础。(二)优化业务流程多业务平台数据集成能为企业提供全面的业务视角,打破部门之间的信息壁垒。以一家制造企业为例,在没有进行数据集成之前,生产部门只了解生产线上的产品数量
打破数据孤岛:多业务平台数据集成的奥秘多业务平台数据集成是什么在当今这个数字化程度日益加深的时代,数据已然成为了企业实现成功运营与创新发展的核心资产。随着企业业务的不断拓展以及数字化转型的持续推进“数据孤岛”。多业务平台数据集成,正是打破这些“数据孤岛”的有力武器。它指的是将来自多个不同业务平台数据,整合到一个统一的数据存储库或环境中的过程。在这个过程中,需要对不同格式、结构和语义的数据进行抽取、清洗、转换和加载,使其能够在一个统一的框架下进行管理和分析,实现数据的共享与业务的协同。多业务平台数据集成的重要性多业务平台数据集成对企业发展至关重要,它能解决数据孤岛问题,整合分散数据,为企业运营屡见不鲜。由于不同系统的数据更新时间和方式存在差异,很可能会出现同一客户在不同系统中的信息不一致的现象。而多业务平台数据集成能够有效地消除这些问题。在集成过程中,通过数据清洗技术,可以识别并删除重复的数据,为企业的决策提供了可靠的数据基础。(二)优化业务流程多业务平台数据集成能为企业提供全面的业务视角,打破部门之间的信息壁垒。以一家制造企业为例,在没有进行数据集成之前,生产部门只了解生产线上的产品数量
打破数据孤岛:多业务平台数据集成的奥秘多业务平台数据集成是什么在当今这个数字化程度日益加深的时代,数据已然成为了企业实现成功运营与创新发展的核心资产。随着企业业务的不断拓展以及数字化转型的持续推进“数据孤岛”。多业务平台数据集成,正是打破这些“数据孤岛”的有力武器。它指的是将来自多个不同业务平台数据,整合到一个统一的数据存储库或环境中的过程。在这个过程中,需要对不同格式、结构和语义的数据进行抽取、清洗、转换和加载,使其能够在一个统一的框架下进行管理和分析,实现数据的共享与业务的协同。多业务平台数据集成的重要性多业务平台数据集成对企业发展至关重要,它能解决数据孤岛问题,整合分散数据,为企业运营屡见不鲜。由于不同系统的数据更新时间和方式存在差异,很可能会出现同一客户在不同系统中的信息不一致的现象。而多业务平台数据集成能够有效地消除这些问题。在集成过程中,通过数据清洗技术,可以识别并删除重复的数据,为企业的决策提供了可靠的数据基础。(二)优化业务流程多业务平台数据集成能为企业提供全面的业务视角,打破部门之间的信息壁垒。以一家制造企业为例,在没有进行数据集成之前,生产部门只了解生产线上的产品数量
时代核心平台数据库软件的研发与服务。在全球去IOE的背景下,Hadoop技术已成为公认的替代传统数据库的大数据产品。公司产品TranswarpDataHub(TDH)的整体架构及功能特性比肩硅谷的发展而引起人们关注。比肩硅谷:专注产品打造平台大数据作为云计算、物联网之后IT行业又一颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营同行,产品性能在业界处于领先水平。公司研发团队是国内早的大数据Hadoop发行版团队,从2009年起即开始致力于大数据Hadoop平台软件的开发,与硅谷同类公司同时起步;2011年在中国率先推出Spark的分布式内存分析引擎和实时在线规模计算分析平台,相比开源Hadoop版本有10x~100x倍性能提升,可处理GB到PB级别的数据。星环科技同时提供存储、分析和挖掘大数据的高效数据平台和服务。产品Hadoop大数据平台。再加上国外的几家厂商,可谓盛况空前,谁能解决客户的问题,谁就能发展。如果我们看下传统数据库厂商的收入和hadoop厂商的收入,我们就会明白,竞争才刚刚开始。Hadoop的兴起
系统的学习如何设计、规划、开发、和部署一个大数据平台,实现对大数据平台的直接认知和经验积累。教师资质星环科技是目前国内极少数掌握大数据核心技术的高科技公司,专注于企业级大数据核心平台数据库软件的研发与公司新闻您是否对大数据各项技术(如HDFS、MapReduce、YARN、Spark等)的技术原理了解?星环TDH优于开源软件的特性有哪些?如何使用星环TDH产品构建企业级的大数据平台解决方案?当Hadoop热门的词汇却没有对应的课程时,TDH大数据专业技术认证培训为您提供了学习并掌握大数据新技术的极佳机会。课程目的通过学习深入了解星环TDH大数据现有技术特点、应用模式、系统设计、运维使用,掌握大数据中咨询顾问,他有丰富的培训经验和Hadoop*实战经历。加入星环科技前周兵先生在神州数码,IBM,华胜天成担任技术培训师和咨询顾问。专职教授大数据Hadoop*课程和OracleDBA。如何报名发送邮件到training@transwarp.io报名,请注明希望参加的课程,名额有限,额满即止。市面上的大数据培训课程大多以高薪为噱头,却没有深入实际的数据挖掘核心技术的内容;当理念灌输填满长达几天的课程却没有应用结合理论;当培训讲师缺乏经验只是普通的技术员;当大数据挖掘、机器学习已成为
大数据平台安全是一个多维度、多层次的问题,涉及到技术、管理和法规等多个方面。以下是一些大数据平台安全的关键策略和工具:安全策略数据安全管理组织架构:建立规范的信息安全管理组织架构,包括策略层、管理层解决方案,包含数据脱敏、SQL指令拦截/审核、SQL指令审计等功能。最佳实践加密:在大数据管道中建立可扩展的加密实践,包括静态数据和传输中的数据。用户访问控制:基于角色的访问管理,遵循最小特权原则,限制对,保护用户隐私。数据销毁:使用国际标准进行数据清除、磁盘消磁以及物理销毁,避免数据泄漏风险。安全工具数据治理工具:提供数据治理框架,支持数据管理团队协作管理大数据资产和元数据数据安全态势管理工具:帮助专业人员映射不同云平台上的数据,并进行分类。数据安全运营管理平台:构建平台化、体系化、可视化、智能化的数据安全管理平台,实现数据安全的事前防护、事中监测、事后审计。数据脱敏工具:如行云管家提供的、评测手段和评测流程。大数据服务支撑体系:基于大数据资源为信息安全保障提供支撑服务,开展大数据在安全领域的研究及推广应用。
企业客户能够将原有平台上的传统应用轻松迁移到大数据平台上。星环科技的其他专有产品也采用了相似的策略。同时,Gilbert注意到,相对美国的大数据用户,中国用户更关心大数据带来的实际效果。规模让人印象为深刻的是星环科技部署的大数据平台的规模。孙元浩提到星环科技为一家大型运营商打造的容量数据平台存储了“20PB”的数据。同时,星环科技的产品服务于各种规模的场景,据其网站介绍,可以提供“10GB到(10月3日,在硅谷牛的大数据分析公司Wikibon组织的会议上,Siliconangel认为Transwarp已经具备进入美国的能力。)中国的经济和科技产业在过去的几十年中得到了快速的发展。这对100PB”的部署。星环科技已经为成为国际上的大数据厂商有力竞争者做好准备。星环科技携其专有产品进军美国市场的过程值得我们关注。以下为英文原文GeorgeGilbert与星环科技的联合创始人兼CTO孙元浩共同探讨了星环的产品以及和美国的Hadoop厂商在规模上的比较。Hadoop核心上的SQL层星环科技提供多个建立在同一个Hadoop核心上的专有产品。与众不同的是
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...