语言大模型的使用场景

行业资讯
大语言模型应用场景
大语言模型的应用场景非常广泛,以下是一些主要的领域:自然语言处理(NLP):大语言模型在自然语言处理领域有广泛的应用,如文本分类、情感分析、机器翻译等。计算机视觉(CV):大语言模型可以应用于计算机,预测其可能感兴趣的内容,并为其提供个性化的推荐。金融领域:大语言模型在金融领域也有着广泛的应用,如投资策略、风险评估、财务报告分析等。除了上述提到的应用场景,大语言模型还可以应用于其他领域,如医疗视觉任务,如图像和视频分类、目标检测、图像生成等。语音识别:大语言模型可以用于语音识别,将语音转化为文字,以及语音合成,将文字转化为语音。推荐系统:大语言模型可以用于推荐系统,根据用户的历史行为和偏好、法律等。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。
语言大模型的使用场景 更多内容

行业资讯
大语言模型应用场景
大语言模型的应用场景非常广泛,以下是一些主要的领域:自然语言处理(NLP):大语言模型在自然语言处理领域有广泛的应用,如文本分类、情感分析、机器翻译等。计算机视觉(CV):大语言模型可以应用于计算机,预测其可能感兴趣的内容,并为其提供个性化的推荐。金融领域:大语言模型在金融领域也有着广泛的应用,如投资策略、风险评估、财务报告分析等。除了上述提到的应用场景,大语言模型还可以应用于其他领域,如医疗视觉任务,如图像和视频分类、目标检测、图像生成等。语音识别:大语言模型可以用于语音识别,将语音转化为文字,以及语音合成,将文字转化为语音。推荐系统:大语言模型可以用于推荐系统,根据用户的历史行为和偏好、法律等。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
数据中台使用场景有哪些?
数据中台构建了一套包括数据技术、数据治理、数据运营等在内的数据建设、管理、使用体系,能够大幅提升数据的利用效率和决策能力。数据中台使用场景数据中台广泛应用于政企行业的数字化转型过程中,具体使用场景包括:数据整合与治理:整合企业内部不同系统的数据源,进行统一管理和分析,提升数据质量和安全性。实时数据处理:支持实时数据的收集与分析,帮助企业快速做出反应,提升业务效率。业务智能:将数据转化为业务智能,支持企业的战略决策,提升竞争力。数据共享与协同:实现跨部门、跨企业的数据共享与协同,提高工作效率和数据利用率。星环数据中台解决方案星环数据中台聚合跨域数据,对数据进行清洗、转换、整合,实现

行业资讯
数据中台使用场景有哪些?
数据中台构建了一套包括数据技术、数据治理、数据运营等在内的数据建设、管理、使用体系,能够大幅提升数据的利用效率和决策能力。数据中台使用场景数据中台广泛应用于政企行业的数字化转型过程中,具体使用场景包括:数据整合与治理:整合企业内部不同系统的数据源,进行统一管理和分析,提升数据质量和安全性。实时数据处理:支持实时数据的收集与分析,帮助企业快速做出反应,提升业务效率。业务智能:将数据转化为业务智能,支持企业的战略决策,提升竞争力。数据共享与协同:实现跨部门、跨企业的数据共享与协同,提高工作效率和数据利用率。星环数据中台解决方案星环数据中台聚合跨域数据,对数据进行清洗、转换、整合,实现

行业资讯
数据中台使用场景有哪些?
数据中台构建了一套包括数据技术、数据治理、数据运营等在内的数据建设、管理、使用体系,能够大幅提升数据的利用效率和决策能力。数据中台使用场景数据中台广泛应用于政企行业的数字化转型过程中,具体使用场景包括:数据整合与治理:整合企业内部不同系统的数据源,进行统一管理和分析,提升数据质量和安全性。实时数据处理:支持实时数据的收集与分析,帮助企业快速做出反应,提升业务效率。业务智能:将数据转化为业务智能,支持企业的战略决策,提升竞争力。数据共享与协同:实现跨部门、跨企业的数据共享与协同,提高工作效率和数据利用率。星环数据中台解决方案星环数据中台聚合跨域数据,对数据进行清洗、转换、整合,实现

行业资讯
数据中台使用场景有哪些?
数据中台构建了一套包括数据技术、数据治理、数据运营等在内的数据建设、管理、使用体系,能够大幅提升数据的利用效率和决策能力。数据中台使用场景数据中台广泛应用于政企行业的数字化转型过程中,具体使用场景包括:数据整合与治理:整合企业内部不同系统的数据源,进行统一管理和分析,提升数据质量和安全性。实时数据处理:支持实时数据的收集与分析,帮助企业快速做出反应,提升业务效率。业务智能:将数据转化为业务智能,支持企业的战略决策,提升竞争力。数据共享与协同:实现跨部门、跨企业的数据共享与协同,提高工作效率和数据利用率。星环数据中台解决方案星环数据中台聚合跨域数据,对数据进行清洗、转换、整合,实现

行业资讯
数据中台使用场景有哪些?
数据中台构建了一套包括数据技术、数据治理、数据运营等在内的数据建设、管理、使用体系,能够大幅提升数据的利用效率和决策能力。数据中台使用场景数据中台广泛应用于政企行业的数字化转型过程中,具体使用场景包括:数据整合与治理:整合企业内部不同系统的数据源,进行统一管理和分析,提升数据质量和安全性。实时数据处理:支持实时数据的收集与分析,帮助企业快速做出反应,提升业务效率。业务智能:将数据转化为业务智能,支持企业的战略决策,提升竞争力。数据共享与协同:实现跨部门、跨企业的数据共享与协同,提高工作效率和数据利用率。星环数据中台解决方案星环数据中台聚合跨域数据,对数据进行清洗、转换、整合,实现

行业资讯
大模型的应用场景
大模型目前的应用场景大致可以分为两类,一类是利用大模型的自然语言理解能力把它作为人机交互的接口,即大模型+应用;第二类场景是用大模型来构建现有应用的大脑、决策机制,利用它的需求理解、分析、推理的能力生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据分析人员以及业务管理者只需使用自然语言,就能利用TranswarpSoLar大模型获取所需的数据分析、展示和报告,轻松地应对各种复杂的数据分析挑战,并快速获得有价值的数据洞察,为企业的业务增长提供原动力。复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。TranswarpSoLar具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量来构建应用,做一个中枢或者控制器。未来,每个企业都能打造自己的专属大模型,而企业的每个个人都可以拥有自己的AI助理来帮助提升效率,大模型在各行各业的应用将会推动一次产业革命,从而提升整个社会的生产效率。作为一家企业级大数据基础软件开发商,星环科技致力于为行业提供大模型应用构建的一系列工具,以及在擅长的领域研发领域基础大模型,助力企业抓住大模型时代的新机遇。为了帮助企业用户基于大模型构建应用,星环

行业资讯
大模型的应用场景
大模型目前的应用场景大致可以分为两类,一类是利用大模型的自然语言理解能力把它作为人机交互的接口,即大模型+应用;第二类场景是用大模型来构建现有应用的大脑、决策机制,利用它的需求理解、分析、推理的能力生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据分析人员以及业务管理者只需使用自然语言,就能利用TranswarpSoLar大模型获取所需的数据分析、展示和报告,轻松地应对各种复杂的数据分析挑战,并快速获得有价值的数据洞察,为企业的业务增长提供原动力。复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。TranswarpSoLar具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量来构建应用,做一个中枢或者控制器。未来,每个企业都能打造自己的专属大模型,而企业的每个个人都可以拥有自己的AI助理来帮助提升效率,大模型在各行各业的应用将会推动一次产业革命,从而提升整个社会的生产效率。作为一家企业级大数据基础软件开发商,星环科技致力于为行业提供大模型应用构建的一系列工具,以及在擅长的领域研发领域基础大模型,助力企业抓住大模型时代的新机遇。为了帮助企业用户基于大模型构建应用,星环

行业资讯
大模型的应用场景
大模型目前的应用场景大致可以分为两类,一类是利用大模型的自然语言理解能力把它作为人机交互的接口,即大模型+应用;第二类场景是用大模型来构建现有应用的大脑、决策机制,利用它的需求理解、分析、推理的能力生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据分析人员以及业务管理者只需使用自然语言,就能利用TranswarpSoLar大模型获取所需的数据分析、展示和报告,轻松地应对各种复杂的数据分析挑战,并快速获得有价值的数据洞察,为企业的业务增长提供原动力。复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。TranswarpSoLar具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量来构建应用,做一个中枢或者控制器。未来,每个企业都能打造自己的专属大模型,而企业的每个个人都可以拥有自己的AI助理来帮助提升效率,大模型在各行各业的应用将会推动一次产业革命,从而提升整个社会的生产效率。作为一家企业级大数据基础软件开发商,星环科技致力于为行业提供大模型应用构建的一系列工具,以及在擅长的领域研发领域基础大模型,助力企业抓住大模型时代的新机遇。为了帮助企业用户基于大模型构建应用,星环
猜你喜欢
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...