自然语言大模型常用模型

行业资讯
自然语言处理,自然语言处理技术
,自然语言处理还包括一系列高级任务,例如命名实体识别、关系抽取、情感分析、机器翻译等。这些任务需要结合各种算法模型和技术手段,如语言模型、神经网络、统计学习等,以实现自然语言处理的准确和高效。自然语言处理技术的不断发展和应用,正在为人们的日常生活、工作和学习等方面带来越来越多的便捷和效益。自然语言处理指一种以语言为对象,利用计算机技术进行分析、理解和处理自然语言的技术。自然语言处理(NaturalLanguageProcessing,简称NLP)是工智能和语言学交叉的领域,旨在实现计算机与人类自然语言进行交互的目的。NLP的任务包括自然语言理解、自然语言生成、信息抽取、文本分类和情感分析等。通过自然语言处理技术,可以使计算机理解人类语言,从而实现自然语言的交流、信息的检索和处理等功能。NLP技术已经广泛应于智能客服、机器翻译、情感分析、自然语生成和语音识别等领域。为了实现自然语言处理,需要将人类语言转换为计算机所能理解的形式。这通常通过文本预处理、分词、词性标注、句法分析
自然语言大模型常用模型 更多内容

行业资讯
自然语言处理,自然语言处理技术
,自然语言处理还包括一系列高级任务,例如命名实体识别、关系抽取、情感分析、机器翻译等。这些任务需要结合各种算法模型和技术手段,如语言模型、神经网络、统计学习等,以实现自然语言处理的准确和高效。自然语言处理技术的不断发展和应用,正在为人们的日常生活、工作和学习等方面带来越来越多的便捷和效益。自然语言处理指一种以语言为对象,利用计算机技术进行分析、理解和处理自然语言的技术。自然语言处理(NaturalLanguageProcessing,简称NLP)是工智能和语言学交叉的领域,旨在实现计算机与人类自然语言进行交互的目的。NLP的任务包括自然语言理解、自然语言生成、信息抽取、文本分类和情感分析等。通过自然语言处理技术,可以使计算机理解人类语言,从而实现自然语言的交流、信息的检索和处理等功能。NLP技术已经广泛应于智能客服、机器翻译、情感分析、自然语生成和语音识别等领域。为了实现自然语言处理,需要将人类语言转换为计算机所能理解的形式。这通常通过文本预处理、分词、词性标注、句法分析

行业资讯
自然语言处理,自然语言处理技术
,自然语言处理还包括一系列高级任务,例如命名实体识别、关系抽取、情感分析、机器翻译等。这些任务需要结合各种算法模型和技术手段,如语言模型、神经网络、统计学习等,以实现自然语言处理的准确和高效。自然语言处理技术的不断发展和应用,正在为人们的日常生活、工作和学习等方面带来越来越多的便捷和效益。自然语言处理指一种以语言为对象,利用计算机技术进行分析、理解和处理自然语言的技术。自然语言处理(NaturalLanguageProcessing,简称NLP)是工智能和语言学交叉的领域,旨在实现计算机与人类自然语言进行交互的目的。NLP的任务包括自然语言理解、自然语言生成、信息抽取、文本分类和情感分析等。通过自然语言处理技术,可以使计算机理解人类语言,从而实现自然语言的交流、信息的检索和处理等功能。NLP技术已经广泛应于智能客服、机器翻译、情感分析、自然语生成和语音识别等领域。为了实现自然语言处理,需要将人类语言转换为计算机所能理解的形式。这通常通过文本预处理、分词、词性标注、句法分析

行业资讯
自然语言处理,自然语言处理技术
,自然语言处理还包括一系列高级任务,例如命名实体识别、关系抽取、情感分析、机器翻译等。这些任务需要结合各种算法模型和技术手段,如语言模型、神经网络、统计学习等,以实现自然语言处理的准确和高效。自然语言处理技术的不断发展和应用,正在为人们的日常生活、工作和学习等方面带来越来越多的便捷和效益。自然语言处理指一种以语言为对象,利用计算机技术进行分析、理解和处理自然语言的技术。自然语言处理(NaturalLanguageProcessing,简称NLP)是工智能和语言学交叉的领域,旨在实现计算机与人类自然语言进行交互的目的。NLP的任务包括自然语言理解、自然语言生成、信息抽取、文本分类和情感分析等。通过自然语言处理技术,可以使计算机理解人类语言,从而实现自然语言的交流、信息的检索和处理等功能。NLP技术已经广泛应于智能客服、机器翻译、情感分析、自然语生成和语音识别等领域。为了实现自然语言处理,需要将人类语言转换为计算机所能理解的形式。这通常通过文本预处理、分词、词性标注、句法分析

行业资讯
自然语言处理,自然语言处理技术
,自然语言处理还包括一系列高级任务,例如命名实体识别、关系抽取、情感分析、机器翻译等。这些任务需要结合各种算法模型和技术手段,如语言模型、神经网络、统计学习等,以实现自然语言处理的准确和高效。自然语言处理技术的不断发展和应用,正在为人们的日常生活、工作和学习等方面带来越来越多的便捷和效益。自然语言处理指一种以语言为对象,利用计算机技术进行分析、理解和处理自然语言的技术。自然语言处理(NaturalLanguageProcessing,简称NLP)是工智能和语言学交叉的领域,旨在实现计算机与人类自然语言进行交互的目的。NLP的任务包括自然语言理解、自然语言生成、信息抽取、文本分类和情感分析等。通过自然语言处理技术,可以使计算机理解人类语言,从而实现自然语言的交流、信息的检索和处理等功能。NLP技术已经广泛应于智能客服、机器翻译、情感分析、自然语生成和语音识别等领域。为了实现自然语言处理,需要将人类语言转换为计算机所能理解的形式。这通常通过文本预处理、分词、词性标注、句法分析

行业资讯
LLM 大语言模型
大语言模型(LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。大语言模型通常使用大规模的语料库进行训练,这些语料库包含了大量的文本数据,涵盖了各种领域和语言风格。通过训练,大语言模型可以学习到文本数据的内在特征和规律,从而在各种自然语言处理任务中表现出色。大语言模型的优势在于其能够处理复杂的自然语言任务,并且生成的文本质量较高。此外,由于大语言模型经过了大量的文本数据训练,因此其具有很好的泛化性能,可以适应多种场景和应用。LLM大语言模型的应用场景主要集中在自然语言处理、机器翻译、智能写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量的文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为广泛应用。智能语音助手:帮助人们处理语音输入和输出。这类应用可以在智能家居、智能手机、智能汽车等领域得到广泛应用。自然语言推理系统:帮助人们进行逻辑推理和分析。这类应用可以在法律、金融、医疗等领域得到广泛应用。

行业资讯
大模型和大语言模型
参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。大语言模型:(LargeLanguageModels,简称LLMs)是大模型的一个子集,专注于处理自然语言,能够理解、生成和亿的参数,帮助它们学习语言数据中的复杂模式。大模型是一个更广泛的概念,包括了大语言模型在内的多种类型的模型,而大语言模型则是专门针对自然语言处理任务的大模型。大模型可以应用于多种不同的领域,而大语言模型主要应用于自然语言相关的任务。大模型和大语言模型是人工智能领域中两个重要的概念,各自有不同的特点和应用场景。大模型:通常指的是具有大规模参数和复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个处理大规模文本数据。大语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。大语言模型的特点是规模庞大,包含数十

行业资讯
大语言模型应用
大语言模型应用非常广泛,如:自然语言生成、机器翻译、语音识别、信息检索、自然语言推理、智能聊天机器人等等。自然语言生成:大语言模型可以生成高质量的自然语言文本,例如文章、电子邮件、新增品、对话等。这可用于自动化写作、客户服务机器人等。机器翻译:大语言模型可用于机器翻译,将一种自然语言翻译成另一种然语言。在这方面,其应用已经被广泛运用,包括GoogleTranslate、百度翻译等。语音识别:大一种智能客户支持工具,能够与用户进行多轮对话,并解决问题。自然语言推理:大语言模型可以用于自然语言推理,例如理解文章的意义、对问题进行回答等。智能写作助手:大语言模型可以帮助写作者改进他们的写作,例如语言模型可以协助语音识别,例如Siri、Alexa和谷歌助手等语音识别功能。信息检索:大语言模型可用于信息检索,例如搜索引擎。这些模型可识别查询关字,并返回相关联的文本。多轮对话:大语言模型对话引擎是文本自动提纲、语法和拼写检查器、段落和句子优化器等。智能聊天机器人:大语言模型可用于创建智能聊天机器人,以协助客户服务、电子商务和在线客户支持。模拟人类对话,并使用推荐引擎和先进的机器学习算法来解决客户

行业资讯
大模型和大语言模型
参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。大语言模型:(LargeLanguageModels,简称LLMs)是大模型的一个子集,专注于处理自然语言,能够理解、生成和亿的参数,帮助它们学习语言数据中的复杂模式。大模型是一个更广泛的概念,包括了大语言模型在内的多种类型的模型,而大语言模型则是专门针对自然语言处理任务的大模型。大模型可以应用于多种不同的领域,而大语言模型主要应用于自然语言相关的任务。大模型和大语言模型是人工智能领域中两个重要的概念,各自有不同的特点和应用场景。大模型:通常指的是具有大规模参数和复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个处理大规模文本数据。大语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。大语言模型的特点是规模庞大,包含数十

行业资讯
大语言模型应用
大语言模型应用非常广泛,如:自然语言生成、机器翻译、语音识别、信息检索、自然语言推理、智能聊天机器人等等。自然语言生成:大语言模型可以生成高质量的自然语言文本,例如文章、电子邮件、新增品、对话等。这可用于自动化写作、客户服务机器人等。机器翻译:大语言模型可用于机器翻译,将一种自然语言翻译成另一种然语言。在这方面,其应用已经被广泛运用,包括GoogleTranslate、百度翻译等。语音识别:大一种智能客户支持工具,能够与用户进行多轮对话,并解决问题。自然语言推理:大语言模型可以用于自然语言推理,例如理解文章的意义、对问题进行回答等。智能写作助手:大语言模型可以帮助写作者改进他们的写作,例如语言模型可以协助语音识别,例如Siri、Alexa和谷歌助手等语音识别功能。信息检索:大语言模型可用于信息检索,例如搜索引擎。这些模型可识别查询关字,并返回相关联的文本。多轮对话:大语言模型对话引擎是文本自动提纲、语法和拼写检查器、段落和句子优化器等。智能聊天机器人:大语言模型可用于创建智能聊天机器人,以协助客户服务、电子商务和在线客户支持。模拟人类对话,并使用推荐引擎和先进的机器学习算法来解决客户
猜你喜欢
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...