如何利用行业数据训练大模型
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
如何利用行业数据训练大模型 更多内容

行业资讯
大模型训练
大模型训练是指在大规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。大模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。大模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环大语言模型运营平台-SophonLLMOps为了:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:大模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择

行业资讯
大模型训练
大模型训练是指在大规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。大模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。大模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环大语言模型运营平台-SophonLLMOps为了:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:大模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择

行业资讯
大模型训练
大模型训练是指在大规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。大模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。大模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环大语言模型运营平台-SophonLLMOps为了:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:大模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择

行业资讯
大模型训练
,例如数据并行、模型并行、流水线并行和张量并行等。此外,大模型训练还需要考虑存储和网络通信的问题,例如如何有效地存储和传输大规模的数据和模型。在训练过程中,需要使用更多的计算资源和存储资源,因此需要更高效地管理和调度这些资源。随着深度学习和大数据技术的发展,大模型训练已经成为机器学习领域的重要研究方向之一。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新大模型训练是一种机器学习的方法,通过训练大规模的模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算的方法来加速训练。同时,为了处理大规模的数据和模型,需要使用更高效的算法和优化技术了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
大模型训练
大模型训练是指在大规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。大模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。大模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环大语言模型运营平台-SophonLLMOps为了:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:大模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择

行业资讯
大模型训练
大模型训练是指在大规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。大模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。大模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环大语言模型运营平台-SophonLLMOps为了:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:大模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择

行业资讯
大模型训练
,例如数据并行、模型并行、流水线并行和张量并行等。此外,大模型训练还需要考虑存储和网络通信的问题,例如如何有效地存储和传输大规模的数据和模型。在训练过程中,需要使用更多的计算资源和存储资源,因此需要更高效地管理和调度这些资源。随着深度学习和大数据技术的发展,大模型训练已经成为机器学习领域的重要研究方向之一。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新大模型训练是一种机器学习的方法,通过训练大规模的模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算的方法来加速训练。同时,为了处理大规模的数据和模型,需要使用更高效的算法和优化技术了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
大模型增量预训练
大模型增量预训练是在已经预训练好的大模型基础上,利用新的数据继续进行训练的过程。其目的是让大模型能够学习到新的知识、技能或者适应新的领域和任务,同时尽量保留原有的语言理解和生成能力。数据准备收集新能需要对数据进行标注,尤其是在有监督的增量预训练场景下,准确的标注可以帮助模型更好地理解数据的语义和任务要求。训练过程调整选择合适的训练策略:一种常见的策略是微调(Fine-tuning),即固定大模型数据:首先需要确定与目标任务或领域相关的新数据。这些数据可以来自多种渠道,如行业报告、学术论文、用户生成的内容等。数据的规模也很重要,足够的数据量能够让模型更好地学习新的模式。但也要注意数据质量,避免的大部分参数,只对最后几层或者与任务相关的特定参数进行更新。这样可以在学习新内容的同时,减少对原有知识的破坏。另一种策略是在整个模型上进行训练,但使用较小的学习率。这种方法可以让模型更全面地吸收新数据中的知识,但也有过度拟合新数据而忘记原有知识的风险。设置训练参数:学习率是关键参数之一。在增量预训练中,由于模型已经有了一定的知识基础,通常需要使用比初始预训练更小的学习率,以避免破坏原有的参数

行业资讯
大语言模型训练
大语言模型训练是指使用大规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。大语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而大语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。大语言模型训练作诗、小说写作和对话机器人等。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对大语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索、增强、评估和管理。在模型运维管理阶段,除了传统MLOps的六大统一,即统一纳管
猜你喜欢
为了方便您接下来的安装使用,社区版团队为您准备了视频教程,可以搭配手册内容一起查看:https://transwarp-ce-1253207870.cos.ap-shanghai.myqcloud.com/TDH-CE-2024-5/%E8%A7%86%E9%A2%91/%E5%BC%80%E5%8F%91%E7%89%88StellarDB%E5%AE%89%E8%A3%85%E8%A7%86%E9%A2%912024.5.mp4安装教程在安装启动StellarDB社区开发版容器之前,请务必执行dockerps确保环境当前无其他正在运行的开发版容器,如果有,请及时停止以防止后续端口冲突。请务必确保您的安装环境已经配置好了hostname以及/etc/hosts文件,否则hostname和IP地址将无法映射,最终导致安装失败。具体配置方式详见安装前系统配置改动安装流程步骤一将从官网下载下来的产品包上传至安装环境产品包名称:TDH-Stellardb-Standalone-Community-Transwarp-2024.5-X86_64-final.tar.gz步骤二执行下述命令进行解...
产品文档
2.1 安装 Hyperbase
通过Manager管理平台,可一键部署Hyperbase。可以在第一次安装TranswarpDataHub集群时安装,也可以向安装好的集群另外安装Hyperbase服务。详细安装步骤及配置项,请参考《TDH安装手册》。安装Hyperbase可以分为以下步骤:软硬件环境检查:检查服务器配置、操作系统、浏览器是否满足要求。安装前配置:配置系统运行过程中所需的文件目录,确保系统运行正常。确认网络配置、Java环境、NTP服务器配置、安全配置、节点访问配置。安装Manager:安装Manager并实现集群管理。安装Hyperbase:您可以通过Manager管理平台安装Hyperbase,并在安装过程中选择所需的HDFS、YARN和Zookeeper等依赖服务以完成部署。产品包上传:在【应用市场】>【产品包】页面上传Hyperbase及相关服务的产品包。服务添加:通过【集群管理】>【添加服务】添加TranswarpHyperbase服务及TranswarpBasic组件(包括HDFS、YARN、Zookeeper、KunDB等)。配置安全:选择安全认证方式,可选简单认证或Kerbe...
产品文档
1 产品介绍
QuarkGateway是连接客户端与QuarkServer服务器的一个中间件,是客户请求QuarkServer服务的总入口,它严格按照用户预定义的配置文件,根据用户的不同需求来提供负载均衡、SQL规则路由、高可用(包括超时转发和宕机转发)、Web运维、Inceptor安全(LDAP,KERBEROS)等各项功能。QuarkGateway可以在多个QuarkServer间平衡业务流量,能够有效地为客户端屏蔽掉集群细节,能将不同的SQL类型路由到不同的QuarkServer,并且解决了QuarkServer超时或宕机后无法执行任务的问题,提高了产品的可用性。QuarkGateway的主要功能包括:负载均衡在这种情景下QuarkGateway可以将特定的业务分担给多个QuarkServer,从而实现多个InceptorServer平衡业务流量的功能,完成此项功能的前提是QuarkServer的TAG属性一致。SQL规则路由QuarkGateway基于特定规则,可将不同类型的SQL路由到不同的QuarkServer。高可用性包括超时转发和宕机转发等,QuarkGateway可将超时或者宕机的...
hbaseSQL的IndexDDL支持创建和删除表的全局索引,包括:创建全局索引:CREATEGLOBALINDEX删除全局索引:DROPGLOBALINDEX但是,目前Hyperbase不支持使用SQL生成索引,您可以从HyperbaseShell中执行rebuild指令来生成索引,具体请参考《Hyperbase使用手册》。(创建索引前插入的数据没有索引,但是创建索引之后的数据有索引。)下面将具体介绍创建和删除索引的语法。创建全局索引:CREATEGLOBALINDEX语法:为Hyperbase表建全局索引CREATEGLOBALINDEX<index_name>ON<tableName>(<column1><SEGMENTLENGTHlength1>|<<(length1)>①[,<column2><SEGMENTLENGTHlength2>|<(length2)>,...]②);①column1:指根据哪个列建全局索引,可以有多个列,但不可包含首列(因该列映射为RowKey)。②...
产品文档
附录 D: JSON 配置使用说明
JSON配置操作简介表数据VS表的扩展数据索引是Hyperbase的核心功能之一,我们在使用Hyperbase时,常常会为表建各类索引,包括全局索引、局部索引和LOB索引,利用索引中的数据提高查询效率。索引中的数据不属于表数据,但是从表数据而来,和表密不可分,所以我们将表数据和它所有索引中的数据合称为表的扩展数据,也就是说,我们做如下定义:表的扩展数据=表数据+全局索引数据+局部索引数据+LOB索引数据表的元数据VS表的扩展元数据Hyperbase表的元数据包括表名、列族名、DATA_BLOCK_ENCODING、TTL、BLOCKSIZE等等。一张Hyperbase表的各个索引也有自己的元数据,和索引数据一样,索引的元数据和表的关系也十分紧密,所以我们将表的元数据和它所有索引的元数据合称为表的扩展元数据:表的扩展元数据=表的元数据+全局索引元数据+局部索引元数据+LOB索引元数据我们有时也会将表的元数据称为基础元数据或者Base元数据。JSON配置的命令行指令为操作表的扩展数据和扩展元数据服务,Hyperbase提供了扩展的命令行指令:describeInJson、alterUseJ...
产品文档
2.3 Hyperbase 管理页面
HyperbaseWeb管理页面主要用于Hyperbase服务的各种数据和信息的查看,下面我们将介绍管理页面的一些简单操作。HMaster管理页面打开HyperbaseActiveMaster管理页面的方法有两种:根据集群的ActiveMaster的IP地址打开:http://master_node_ip:60010。如下图:图25.ActiveMasterWeb页面通过TDH管理页面中Hyperbase服务的HMaster的ServiceLink打开,详细流程如下:TranswarpDataHubWEB管理页面也要根据集群的ActiveMaster的IP地址打开,地址一般是http://master_node_ip:8180。打开对应的Hyperbase服务的Roles页面。如下图:图26.Hyperbase角色页面左上角服务名后的圆点颜色表示集群中的Hyperbase服务的状态,比如当前是绿色的Green(HEALTHY),健康状态。另两种状态是Yellow(WARNING)和Red(DOWN)。通过每个HMaster对应的ServiceLink可以打开HMaster管理页面。如下...
表10.Hyperbase在Zookeeper上的znode节点及作用说明节点分类作用/hyperbase1(zookeeper.znode.parent)Operation节点根节点,包含所有被Hyperbase创建或使用的节点/hyperbase1/hbaseid(zookeeper.znode.clusterId)Operation节点HBaseMaster用UUID标示一个集群。这个clusterId也保存在HDFS上:hdfs:/<namenode>:<port>/hyperbase1/hbase./hyperbase1/rs(zookeeper.znode.rs)Operation节点RegionServer在启动的时候,会创建一个子节点(例如:/hbase/rs/m1.host),以标示RegionServer的在线状态。HbaseMaster监控这个节点,以获取所有OnlineRegionServer,用于Assignment/Balancing。/hyperbase1/master(zookeeper.znode.master)Operatio...
产品文档
2 社区版家族介绍及资源获取
2.1关于社区版您可能想要知道的2.2怎么联系到我们?遇到问题怎么办2.3产品资源汇总
表9.Hyperbase在HDFS中的目录结构简介目录作用有无清理机制or如何清理/hyperbase1根目录/hyperbase1/.tmp临时目录,用于存储临时文件和写入过程中的临时数据。这些临时文件可能包括数据块的临时副本、临时索引文件或其他中间结果文件。写入过程中的临时数据:在hyperbase1中,数据的写入是通过WAL(Write-AheadLog)进行的,WAL用于记录数据变更操作。在写入过程中,hyperbase1会将数据写入到WAL中,同时也会将数据写入到对应的数据文件中。/hyperbase1/.tmp目录用于存储在写入过程中尚未完全写入数据文件的临时数据。这样做是为了确保数据写入的原子性和可靠性。hyperbase1会定期清理/hyperbase1/.tmp目录中的过期临时文件和数据,以避免该目录占用过多的磁盘空间。清理策略可以通过hyperbase1的配置进行调整和设置。/hyperbase1/archive归档目录,用于存储已归档的hyperbase1数据。表数据经过一段时间的存储后,可能会变得不再频繁访问或需要长期保存。为了节省存储空间和提高性能,hyper...
产品文档
客户服务
技术支持感谢你使用星环信息科技(上海)股份有限公司的产品和服务。如您在产品使用或服务中有任何技术问题,可以通过以下途径找到我们的技术人员给予解答。email:support@transwarp.io技术支持热线电话:4007-676-098官方网址:http://www.transwarp.cn/论坛支持:http://support.transwarp.cn/意见反馈如果你在系统安装,配置和使用中发现任何产品问题,可以通过以下方式反馈:email:support@transwarp.io感谢你的支持和反馈,我们一直在努力!