免费好用的大模型

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源企业级垂直领域问答产品。

免费好用的大模型 更多内容

行业资讯
免费模型
国内AI模型正在快速发展,许多公司推出了免费大型语言模型,以满足学生、职场人和其他用户需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研模型底座可自动对知识进行处理与入库,快速实现海量多模知识检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部知识共享平台,促进不同团队和部门条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富上市公司财报和产业链图谱数据,能够为金融机构提供全面深入投资研究分析工具。此外,星环自研模型底座自动化知识工程特性,使其在处理和分析数据方面具有显著优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源对接,使用户能够构建属于自己专属领域模型。这一创新功能极大地扩展了模型应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入数据分析。
行业资讯
免费模型
国内AI模型正在快速发展,许多公司推出了免费大型语言模型,以满足学生、职场人和其他用户需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研模型底座可自动对知识进行处理与入库,快速实现海量多模知识检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部知识共享平台,促进不同团队和部门条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富上市公司财报和产业链图谱数据,能够为金融机构提供全面深入投资研究分析工具。此外,星环自研模型底座自动化知识工程特性,使其在处理和分析数据方面具有显著优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源对接,使用户能够构建属于自己专属领域模型。这一创新功能极大地扩展了模型应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入数据分析。
行业资讯
免费模型
国内AI模型正在快速发展,许多公司推出了免费大型语言模型,以满足学生、职场人和其他用户需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研模型底座可自动对知识进行处理与入库,快速实现海量多模知识检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部知识共享平台,促进不同团队和部门条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富上市公司财报和产业链图谱数据,能够为金融机构提供全面深入投资研究分析工具。此外,星环自研模型底座自动化知识工程特性,使其在处理和分析数据方面具有显著优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源对接,使用户能够构建属于自己专属领域模型。这一创新功能极大地扩展了模型应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入数据分析。
国内好用数据平台大数据平台概述在当今信息爆炸时代,数据已成为推动社会进步和商业发展重要力量。国内数据平台经过多年发展,已经形成了较为完善生态系统,能够满足不同规模企业和机构数据处理数据分析与机器学习组件,为用户提供从基础统计分析到复杂预测模型全套工具。技术特点分析国内主流数据平台在技术上有几个显著特点。多数平台采用开源技术为核心,如生态系统组件,在此基础上进行了深度优化和本土化需求。这些平台通常具备数据采集、存储、处理、分析和可视化等全流程功能,为用户提供一站式数据解决方案。平台核心功能优秀数据平台通常具备几个关键功能模块。首先是分布式存储系统,能够处理海量结构化与非中文文本处理支持,在自然语言处理方面具有本土优势。应用场景举例数据平台在各行各业都有广泛应用。在互联网行业,平台被用于用户行为分析、个性化推荐和广告精准投放。金融领域则利用这些平台进行风险控制、反欺诈和信用评分。政府部门使用数据平台进行城市管理、舆情监测和公共服务优化。制造业企业则应用平台实现供应链优化、设备预测性维护和质量控制。不同行业应用场景对平台功能提出了差异化需求,促使平台提供商
国内好用数据平台大数据平台概述在当今信息爆炸时代,数据已成为推动社会进步和商业发展重要力量。国内数据平台经过多年发展,已经形成了较为完善生态系统,能够满足不同规模企业和机构数据处理数据分析与机器学习组件,为用户提供从基础统计分析到复杂预测模型全套工具。技术特点分析国内主流数据平台在技术上有几个显著特点。多数平台采用开源技术为核心,如生态系统组件,在此基础上进行了深度优化和本土化需求。这些平台通常具备数据采集、存储、处理、分析和可视化等全流程功能,为用户提供一站式数据解决方案。平台核心功能优秀数据平台通常具备几个关键功能模块。首先是分布式存储系统,能够处理海量结构化与非中文文本处理支持,在自然语言处理方面具有本土优势。应用场景举例数据平台在各行各业都有广泛应用。在互联网行业,平台被用于用户行为分析、个性化推荐和广告精准投放。金融领域则利用这些平台进行风险控制、反欺诈和信用评分。政府部门使用数据平台进行城市管理、舆情监测和公共服务优化。制造业企业则应用平台实现供应链优化、设备预测性维护和质量控制。不同行业应用场景对平台功能提出了差异化需求,促使平台提供商
可使用多场景模型实验模板,快速构建特定算法应用解决方案。为什么选择SophonCE社区版?免费:官网免费注册,获取Sophon社区版安装包,零成本快速体验可视化机器学习建模。轻量化、易运维:社区版(CommunityEdition)企业级一站式数据科学平台社区版,旨在为个人开发爱好者、科研机构以及高校师生提供一款免费、便捷、轻量化数据智能分析工具及机器学习建模环境,并通过所见即所得可视化建模能力,拉近从数据接入和分析到数据智能分析应用距离。SophonCE支持用户通过数据连接获取训练数据集,并应用近200种内置分布式算子建立可视化模型训练流程,对模型效果进行多维度指标评估后,可将模型文件导出到本地。同时,也使用;社区版降低了用户使用数据技术门槛,做到了易使用、易管理、易运维、更轻量等特点,并且提供全方位技术支持,用户即使只有零经验也可以做到快速上手自主安装、对接、训练和部署。机器学习可视化建模:提供数据分析全流程拖拽式机器学习建模和推荐式建模服务,帮助用户无需编写代码即可完成机器学习建模,有效地降低了用户使用门槛并对数据智能数据分析迅速上手;可视化建模内置近200种分布式机器学习算子,通过
国内好用数据平台大数据平台概述在当今信息爆炸时代,数据已成为推动社会进步和商业发展重要力量。国内数据平台经过多年发展,已经形成了较为完善生态系统,能够满足不同规模企业和机构数据处理数据分析与机器学习组件,为用户提供从基础统计分析到复杂预测模型全套工具。技术特点分析国内主流数据平台在技术上有几个显著特点。多数平台采用开源技术为核心,如生态系统组件,在此基础上进行了深度优化和本土化需求。这些平台通常具备数据采集、存储、处理、分析和可视化等全流程功能,为用户提供一站式数据解决方案。平台核心功能优秀数据平台通常具备几个关键功能模块。首先是分布式存储系统,能够处理海量结构化与非中文文本处理支持,在自然语言处理方面具有本土优势。应用场景举例数据平台在各行各业都有广泛应用。在互联网行业,平台被用于用户行为分析、个性化推荐和广告精准投放。金融领域则利用这些平台进行风险控制、反欺诈和信用评分。政府部门使用数据平台进行城市管理、舆情监测和公共服务优化。制造业企业则应用平台实现供应链优化、设备预测性维护和质量控制。不同行业应用场景对平台功能提出了差异化需求,促使平台提供商
行业资讯
政务模型
政务模型是指一种专门应用于政务领域综合模型,以人工智能技术为核心,结合数据处理、机器学习、自然语言处理等多种技术手段,对来源于政务系统内部海量、复杂数据进行分析和挖掘,以提供针对性智能决策支持和解决方案。以下是对政务模型详细解析:政务模型通过海量数据训练,具备了类似人类归纳和思考能力。这些模型在计算机视觉、自然语言处理等复杂任务中展现出色性能,为政府管理、社会治理、公共服务等多个领域带来了革命性变革。政务模型应用能够提升政府机构信息服务效率和服务质量,缩短政策落地时间和决策周期,让业务办理更加智能化。政务模型选择建议在选择政务模型时,应考虑以下因素:业务需求匹配:确定模型需要支持具体业务场景和功能,选择与这些需求最匹配模型。性能和准确性:评估模型性能指标,如准确性、响应时间、处理能力等,确保模型能够提供高质量服务。数据兼容性:考虑模型是否能够处理和标准遵循:确保模型符合相关行业标准和法规要求。用户体验:选择易于使用、能够提供良好用户体验模型,特别是对于非技术用户。技术成熟度:考虑模型技术成熟度,避免采用尚未经过验证新兴技术。定制化和本地化能力:考虑模型是否支持定制化和本地化,以满足特定地区文化和语言需求。
好用数据平台有哪些?在当今数据驱动时代,数据平台已成为企业数字化转型核心基础设施。面对海量数据存储、处理和分析需求,各类数据平台应运而生,为不同规模、不同行业企业提供了多样化分布式,支持从云端到边缘设备全栈数据处理。无论技术如何变化,好用数据平台始终是那些能够帮助企业从数据中提取价值,同时保持灵活性以适应未来挑战解决方案。解决方案。本文将介绍几种常见且实用数据平台类型及其特点,帮助读者了解如何选择适合自身需求平台。首先,开源数据平台因其灵活性和成本优势受到广泛欢迎。这类平台通常由社区驱动发展,源代码公开可自由修改、用于机器学习库等,共同构成了一个完整数据生态系统。这类平台虽然学习曲线较陡峭,但灵活度高,能够满足各种定制化需求。其次,云端数据服务平台近年来发展迅速,成为许多企业首选。这类平台由各大云服务商提供,将复杂数据技术封装成简单易用服务,用户无需关心底层基础设施维护。云端平台通常提供从数据采集、存储、处理到分析全套工具链,并且能够根据工作负载自动扩展资源,按实际使用量计费,大大减少
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...