多模块和通用大模型

行业资讯
什么是通用大模型?
什么是通用大模型?通用大模型是指能够处理多领域、多任务的大规模预训练模型。这些模型通过在丰富的数据集上进行预训练,能够学习到更广泛的知识和语言表示能力,通常具有更好的语义理解和生成能力。通用大模型的设计旨在解决传统模型面临的领域依赖性、规模限制和任务特定训练需求等问题。它们可以用于多领域的文本分类、命名实体识别、句子关系识别、情感分析等任务。星环科技提供大模型训练工具,帮助企业打造自己的专属大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大
多模块和通用大模型 更多内容

行业资讯
什么是通用大模型?
什么是通用大模型?通用大模型是指能够处理多领域、多任务的大规模预训练模型。这些模型通过在丰富的数据集上进行预训练,能够学习到更广泛的知识和语言表示能力,通常具有更好的语义理解和生成能力。通用大模型的设计旨在解决传统模型面临的领域依赖性、规模限制和任务特定训练需求等问题。它们可以用于多领域的文本分类、命名实体识别、句子关系识别、情感分析等任务。星环科技提供大模型训练工具,帮助企业打造自己的专属大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大

行业资讯
什么是通用大模型?
什么是通用大模型?通用大模型是指能够处理多领域、多任务的大规模预训练模型。这些模型通过在丰富的数据集上进行预训练,能够学习到更广泛的知识和语言表示能力,通常具有更好的语义理解和生成能力。通用大模型的设计旨在解决传统模型面临的领域依赖性、规模限制和任务特定训练需求等问题。它们可以用于多领域的文本分类、命名实体识别、句子关系识别、情感分析等任务。星环科技提供大模型训练工具,帮助企业打造自己的专属大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大

行业资讯
什么是通用大模型?
什么是通用大模型?通用大模型是指能够处理多领域、多任务的大规模预训练模型。这些模型通过在丰富的数据集上进行预训练,能够学习到更广泛的知识和语言表示能力,通常具有更好的语义理解和生成能力。通用大模型的设计旨在解决传统模型面临的领域依赖性、规模限制和任务特定训练需求等问题。它们可以用于多领域的文本分类、命名实体识别、句子关系识别、情感分析等任务。星环科技提供大模型训练工具,帮助企业打造自己的专属大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大

行业资讯
通用大模型
展现出色的表现。跨领域能力:通用大模型可以处理自然语言理解、图像识别、语音识别等多种类型的任务。高效迁移学习:由于预训练阶段积累了丰富的知识,微调过程往往只需要少量的数据和计算资源。灵活性:同一模型可以结构使得模型决策过程难以解释。通用大模型不仅提高了AI系统的效率和灵活性,还为解决跨领域的复杂问题提供了新的思路。星环科技无涯·问知星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。通用大模型是一种能够适应广泛任务的深度学习模型,通过预训练阶段从大量无标注数据中学习到丰富的知识表示,然后在下游任务中进行微调以适应特定需求。这种“预训练+微调”的范式使得通用大模型能够在多个领域应用于不同的场景,降低了开发新任务专用模型的成本。泛化能力:虽然在多个任务上表现良好,但在某些特定场景下可能需要进一步优化。资源消耗:预训练阶段需要大量的计算资源和存储空间。解释性问题:复杂的神经网络

行业资讯
通用大模型
展现出色的表现。跨领域能力:通用大模型可以处理自然语言理解、图像识别、语音识别等多种类型的任务。高效迁移学习:由于预训练阶段积累了丰富的知识,微调过程往往只需要少量的数据和计算资源。灵活性:同一模型可以结构使得模型决策过程难以解释。通用大模型不仅提高了AI系统的效率和灵活性,还为解决跨领域的复杂问题提供了新的思路。星环科技无涯·问知星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。通用大模型是一种能够适应广泛任务的深度学习模型,通过预训练阶段从大量无标注数据中学习到丰富的知识表示,然后在下游任务中进行微调以适应特定需求。这种“预训练+微调”的范式使得通用大模型能够在多个领域应用于不同的场景,降低了开发新任务专用模型的成本。泛化能力:虽然在多个任务上表现良好,但在某些特定场景下可能需要进一步优化。资源消耗:预训练阶段需要大量的计算资源和存储空间。解释性问题:复杂的神经网络

行业资讯
通用大模型
)是一种大模型,旨在在多个任务和领域中都取得良好的效果,而不仅仅是在特定任务或领域中。通用大模型通常包含大量的知识储备,并且能够自适应不同领域和不同任务,从而能够提高语言理解、文本生成、对话生成、机器翻译等多个方面的能力。通用大模型的研究和应用,将有助于提高人工智能系统的性能,使其更加智能化、自适应和可靠。同时,通用大模型也需要巨大的计算资源和数据支持,因此需要强大的计算能力和大量的数据。除了自然语言处理领域,通用大模型还可以应用于其他领域,例如图像识别、语音识别、机器翻译、自动驾驶、智能家居等。通用大模型可以作为一个通用的基础模型,通过微调等方法,适应不同的应用场景和任务需求。然而,通用大模型也存在一些问题,例如模型复杂度高、训练成本高、数据隐私问题等。因此,在研究和应用通用大模型时,需要充分考虑这些问题,并采取相应的措施和方法来解决。星环科技大模型训练工具,帮助企业打造自己的专属大模型星大模型是指参数量巨大的模型,是一个包含超过十亿个参数的模型。目前,有一些大模型在自然语言处理、图像识别、语音识别等领域取得了很好的效果。通用大模型(GeneralPurposeLargeModel

行业资讯
通用大模型
)是一种大模型,旨在在多个任务和领域中都取得良好的效果,而不仅仅是在特定任务或领域中。通用大模型通常包含大量的知识储备,并且能够自适应不同领域和不同任务,从而能够提高语言理解、文本生成、对话生成、机器翻译等多个方面的能力。通用大模型的研究和应用,将有助于提高人工智能系统的性能,使其更加智能化、自适应和可靠。同时,通用大模型也需要巨大的计算资源和数据支持,因此需要强大的计算能力和大量的数据。除了自然语言处理领域,通用大模型还可以应用于其他领域,例如图像识别、语音识别、机器翻译、自动驾驶、智能家居等。通用大模型可以作为一个通用的基础模型,通过微调等方法,适应不同的应用场景和任务需求。然而,通用大模型也存在一些问题,例如模型复杂度高、训练成本高、数据隐私问题等。因此,在研究和应用通用大模型时,需要充分考虑这些问题,并采取相应的措施和方法来解决。星环科技大模型训练工具,帮助企业打造自己的专属大模型星大模型是指参数量巨大的模型,是一个包含超过十亿个参数的模型。目前,有一些大模型在自然语言处理、图像识别、语音识别等领域取得了很好的效果。通用大模型(GeneralPurposeLargeModel

在大语言模型快速发展的今天,大语言模型能够更好地帮助计算机了解人类的意图。但是企业在实际使用中会发现,由于通用大语言模型缺乏领域知识和知识推演能力,无法实际完成许多专业任务。在通用大语言模型和企业应用之间,存在着巨大的差距,需要通过LLMOps工具链来改造和优化现有的通用大模型,形成真正能够在某个行业内专精的领域大模型,真正让大语言模型技术更好地服务企业。为了帮助企业用户基于大模型构建未来应用、传统机器学习、其他流程等编排成符合用户实际领域和业务需求的任务,并为客户提供服务。星环科技SophonLLMOps解决了客户三个核心痛点:首先,提供一站式工具链,帮助客户完成“通用大语言模型”的训练,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施数据开发、数据维护等工作,对大语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六大统一——统一纳管

在大语言模型快速发展的今天,大语言模型能够更好地帮助计算机了解人类的意图。但是企业在实际使用中会发现,由于通用大语言模型缺乏领域知识和知识推演能力,无法实际完成许多专业任务。在通用大语言模型和企业应用之间,存在着巨大的差距,需要通过LLMOps工具链来改造和优化现有的通用大模型,形成真正能够在某个行业内专精的领域大模型,真正让大语言模型技术更好地服务企业。为了帮助企业用户基于大模型构建未来应用、传统机器学习、其他流程等编排成符合用户实际领域和业务需求的任务,并为客户提供服务。星环科技SophonLLMOps解决了客户三个核心痛点:首先,提供一站式工具链,帮助客户完成“通用大语言模型”的训练,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施数据开发、数据维护等工作,对大语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六大统一——统一纳管
猜你喜欢
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...