大模型数据训练费用多少
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
大模型数据训练费用多少 更多内容

行业资讯
大模型训练
大模型训练是一种机器学习的方法,通过训练大规模的模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算的方法来加速训练。同时,为了处理大规模的数据和模型,需要使用更高效的算法和优化技术,例如数据并行、模型并行、流水线并行和张量并行等。此外,大模型训练还需要考虑存储和网络通信的问题,例如如何有效地存储和传输大规模的数据和模型。在训练过程中,需要使用更多的计算资源和存储资源,因此需要更高效地管理和调度这些资源。随着深度学习和大数据技术的发展,大模型训练已经成为机器学习领域的重要研究方向之一。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
大模型训练语料
大模型训练语料是指用于训练人工智能大模型的文本数据集合。特点大规模性:大模型通常需要海量的语料来学习丰富的语言知识和语义信息,以提高模型的泛化能力和性能。一般来说,训练数据规模越大,模型能够学习到的语言表达,对于训练具有专业领域知识的大模型非常有价值,但需要注意版权问题。社交媒体数据:社交媒体平台上的用户生成内容,反映了当下社会热点、用户情感和各种生活场景,能够为模型提供更贴近实际应用的语言样本,但数据的噪声较大,需要进行有效的处理和筛选。企业数据:一些企业拥有大量的内部数据,如客服记录、产品描述、用户评论等,这些数据与企业的业务和用户需求密切相关,可用于训练针对特定行业或领域的大模型,以提高质量和标注准确性,可直接用于特定任务的模型训练或作为预训练数据的一部分。书籍、文献和论文:包括各种专业书籍、学术文献、研究论文等,这些文本数据经过专业编辑和审核,质量较高,蕴含着丰富的专业知识和深度的。标注数据可用于监督学习,帮助模型学习特定任务的特征和模式,提高模型在该任务上的性能。数据划分:将语料划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于在训练过程中调整模型的超参数和评估模型

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡:合理调整不同数据集的采样比例,平衡模型对大规模和小规模数据集的依赖,使模型能够更全面地学习到各种类型的数据特征。模型评估与优化效果评测指标:使用困惑度、比特每字符等指标来评估模型在语言生成任务中的表现。模型调整与优化:根据评估结果对模型进行调整和优化,如调整模型的超参数、增加训练数据、改进模型结构等,以提高模型的性能和泛化能力。

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡:合理调整不同数据集的采样比例,平衡模型对大规模和小规模数据集的依赖,使模型能够更全面地学习到各种类型的数据特征。模型评估与优化效果评测指标:使用困惑度、比特每字符等指标来评估模型在语言生成任务中的表现。模型调整与优化:根据评估结果对模型进行调整和优化,如调整模型的超参数、增加训练数据、改进模型结构等,以提高模型的性能和泛化能力。

行业资讯
大模型训练
大模型训练是一种机器学习的方法,通过训练大规模的模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算的方法来加速训练。同时,为了处理大规模的数据和模型,需要使用更高效的算法和优化技术,例如数据并行、模型并行、流水线并行和张量并行等。此外,大模型训练还需要考虑存储和网络通信的问题,例如如何有效地存储和传输大规模的数据和模型。在训练过程中,需要使用更多的计算资源和存储资源,因此需要更高效地管理和调度这些资源。随着深度学习和大数据技术的发展,大模型训练已经成为机器学习领域的重要研究方向之一。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
AI大模型训练
AI大模型的训练是一个复杂的过程,涉及使用深度学习技术对模型进行大规模的数据训练。以星环科技的无涯为例,作为一个基于大规模语言模型的智能助手,其训练过程通常包括以下几个关键步骤:数据收集:收集大量文本数据,这些数据可以来自互联网、书籍、文章等多源渠道,对于政务大模型而言,则侧重于政务相关的文档和资料。数据预处理:清洗和格式化数据,去除噪声和无关信息,确保数据质量。模型构建:设计神经网络架构,用于处理序列数据。训练过程:使用GPU或TPU等高性能计算资源对模型进行迭代训练,调整参数以最小化损失函数。评估与优化:在验证集上评估模型性能,并根据结果进行调优。测试与部署:在测试集上进一步验证模型效果,并最终部署到实际应用中。AI大模型的训练需要大量的计算资源和专业知识,旨在使模型能够理解和生成高质量的文本内容。星环大语言模型运营平台——SophonLLMOps为了帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡:合理调整不同数据集的采样比例,平衡模型对大规模和小规模数据集的依赖,使模型能够更全面地学习到各种类型的数据特征。模型评估与优化效果评测指标:使用困惑度、比特每字符等指标来评估模型在语言生成任务中的表现。模型调整与优化:根据评估结果对模型进行调整和优化,如调整模型的超参数、增加训练数据、改进模型结构等,以提高模型的性能和泛化能力。

行业资讯
AI大模型训练
AI大模型的训练是一个复杂的过程,涉及使用深度学习技术对模型进行大规模的数据训练。以星环科技的无涯为例,作为一个基于大规模语言模型的智能助手,其训练过程通常包括以下几个关键步骤:数据收集:收集大量文本数据,这些数据可以来自互联网、书籍、文章等多源渠道,对于政务大模型而言,则侧重于政务相关的文档和资料。数据预处理:清洗和格式化数据,去除噪声和无关信息,确保数据质量。模型构建:设计神经网络架构,用于处理序列数据。训练过程:使用GPU或TPU等高性能计算资源对模型进行迭代训练,调整参数以最小化损失函数。评估与优化:在验证集上评估模型性能,并根据结果进行调优。测试与部署:在测试集上进一步验证模型效果,并最终部署到实际应用中。AI大模型的训练需要大量的计算资源和专业知识,旨在使模型能够理解和生成高质量的文本内容。星环大语言模型运营平台——SophonLLMOps为了帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。

行业资讯
自训练大模型一体机
自训练大模型一体机近年来,人工智能技术快速发展,大语言模型展现出惊人的能力。这些模型能够理解并生成自然语言,完成翻译、写作、编程等多种任务。然而,训练和使用这些大模型通常需要依赖云计算服务,这对数据。这些处理器专门针对矩阵运算等机器学习常见计算任务进行了优化,能够有效处理海量参数的计算需求。存储系统则采用高速固态硬盘与大容量机械硬盘的组合,既满足训练时快速读取数据的要求,又能存储庞大的模型参数和训练数据集。部分高端机型还会配备高速网络接口,便于多台设备协同训练更大规模的模型。在软件层面,自训练大模型一体机预装了完整的机器学习开发环境。这包括主流的深度学习框架,以及各种模型优化工具和算法库。系统的影响,响应速度更快,使用体验更流畅。另一个重要优势是长期使用成本。虽然初期购置费用较高,但避免了持续支付的云服务费用。对于需要长期、频繁使用大模型的企业或研究机构来说,一体机方案往往更具经济性。用户还可以根据实际需求灵活调整训练策略,不必受限于云服务商提供的固定配置。隐私、使用成本和网络稳定性都提出了挑战。自训练大模型一体机就是为了解决这些问题而出现的新型解决方案。自训练大模型一体机是一种将硬件设备与人工智能训练框架深度整合的独立系统。它集成了高性能计算单元、大
猜你喜欢
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果: