大模型免费额度

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

大模型免费额度 更多内容

行业资讯
免费模型
国内的AI模型正在快速发展,许多公司推出了免费的大型语言模型,以满足学生、职场人和其他用户的需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研的模型底座可自动对知识进行处理与入库,快速实现海量多模知识的检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部的知识共享平台,促进不同团队和部门条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富的上市公司财报和产业链图谱数据,能够为金融机构提供全面深入的投资研究分析工具。此外,星环自研模型底座的自动化知识工程特性,使其在处理和分析数据方面具有显著的优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源的对接,使用户能够构建属于自己的专属领域模型。这一创新功能极大地扩展了模型的应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入的数据分析。
行业资讯
免费模型
国内的AI模型正在快速发展,许多公司推出了免费的大型语言模型,以满足学生、职场人和其他用户的需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研的模型底座可自动对知识进行处理与入库,快速实现海量多模知识的检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部的知识共享平台,促进不同团队和部门条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富的上市公司财报和产业链图谱数据,能够为金融机构提供全面深入的投资研究分析工具。此外,星环自研模型底座的自动化知识工程特性,使其在处理和分析数据方面具有显著的优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源的对接,使用户能够构建属于自己的专属领域模型。这一创新功能极大地扩展了模型的应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入的数据分析。
行业资讯
免费模型
国内的AI模型正在快速发展,许多公司推出了免费的大型语言模型,以满足学生、职场人和其他用户的需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研的模型底座可自动对知识进行处理与入库,快速实现海量多模知识的检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部的知识共享平台,促进不同团队和部门条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富的上市公司财报和产业链图谱数据,能够为金融机构提供全面深入的投资研究分析工具。此外,星环自研模型底座的自动化知识工程特性,使其在处理和分析数据方面具有显著的优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源的对接,使用户能够构建属于自己的专属领域模型。这一创新功能极大地扩展了模型的应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入的数据分析。
数据平台TDH、分布式关系型数据库ArgoDB及KunDB、数据开发工具TDS、智能分析工具Sophon等。解决方案星环科技利用数据科学平台的机器学习及深度学习技术,为该期货交易所搭建了深度神经网络模型可解释性。后,通过Sophon模型进行API发布,快速上线并支持更新,从而保证模型的质量,且方便维护。并对接下游应用系统、可视化BI系统、实时监控屏的业务终端,终完成模型上线闭环的打通。2、异常交易识别系统,快速锁定异常行为星环科技为郑州商品交易所提供的异常交易(交易模式)识别系统,通过一站式数据平台TDH和企业级智能分析工具TranswarpSophon共同构建逆向强化学习模型,采用全方位科技作为合作伙伴,以解决以上痛点。星环科技成立于2013年,专注于企业级容器云计算、数据和人工智能核心平台的产品研发,目前公司建立了多个产品系列:基于容器的智能数据云平台TDC、一站式极速,应用在风控措施辅助决策、交易异常行为识别以及套期保值额度审批三个场景中。对应这三个场景,星环科技为该期货交易所分别搭建了三个系统一一风控措施辅助决策、异常交易识别系统以及套期保值审批额度推荐系统。1
数据平台TDH、分布式关系型数据库ArgoDB及KunDB、数据开发工具TDS、智能分析工具Sophon等。解决方案星环科技利用数据科学平台的机器学习及深度学习技术,为该期货交易所搭建了深度神经网络模型可解释性。后,通过Sophon模型进行API发布,快速上线并支持更新,从而保证模型的质量,且方便维护。并对接下游应用系统、可视化BI系统、实时监控屏的业务终端,终完成模型上线闭环的打通。2、异常交易识别系统,快速锁定异常行为星环科技为郑州商品交易所提供的异常交易(交易模式)识别系统,通过一站式数据平台TDH和企业级智能分析工具TranswarpSophon共同构建逆向强化学习模型,采用全方位科技作为合作伙伴,以解决以上痛点。星环科技成立于2013年,专注于企业级容器云计算、数据和人工智能核心平台的产品研发,目前公司建立了多个产品系列:基于容器的智能数据云平台TDC、一站式极速,应用在风控措施辅助决策、交易异常行为识别以及套期保值额度审批三个场景中。对应这三个场景,星环科技为该期货交易所分别搭建了三个系统一一风控措施辅助决策、异常交易识别系统以及套期保值审批额度推荐系统。1
数据平台TDH、分布式关系型数据库ArgoDB及KunDB、数据开发工具TDS、智能分析工具Sophon等。解决方案星环科技利用数据科学平台的机器学习及深度学习技术,为该期货交易所搭建了深度神经网络模型可解释性。后,通过Sophon模型进行API发布,快速上线并支持更新,从而保证模型的质量,且方便维护。并对接下游应用系统、可视化BI系统、实时监控屏的业务终端,终完成模型上线闭环的打通。2、异常交易识别系统,快速锁定异常行为星环科技为郑州商品交易所提供的异常交易(交易模式)识别系统,通过一站式数据平台TDH和企业级智能分析工具TranswarpSophon共同构建逆向强化学习模型,采用全方位科技作为合作伙伴,以解决以上痛点。星环科技成立于2013年,专注于企业级容器云计算、数据和人工智能核心平台的产品研发,目前公司建立了多个产品系列:基于容器的智能数据云平台TDC、一站式极速,应用在风控措施辅助决策、交易异常行为识别以及套期保值额度审批三个场景中。对应这三个场景,星环科技为该期货交易所分别搭建了三个系统一一风控措施辅助决策、异常交易识别系统以及套期保值审批额度推荐系统。1
数据平台TDH、分布式关系型数据库ArgoDB及KunDB、数据开发工具TDS、智能分析工具Sophon等。解决方案星环科技利用数据科学平台的机器学习及深度学习技术,为该期货交易所搭建了深度神经网络模型可解释性。后,通过Sophon模型进行API发布,快速上线并支持更新,从而保证模型的质量,且方便维护。并对接下游应用系统、可视化BI系统、实时监控屏的业务终端,终完成模型上线闭环的打通。2、异常交易识别系统,快速锁定异常行为星环科技为郑州商品交易所提供的异常交易(交易模式)识别系统,通过一站式数据平台TDH和企业级智能分析工具TranswarpSophon共同构建逆向强化学习模型,采用全方位科技作为合作伙伴,以解决以上痛点。星环科技成立于2013年,专注于企业级容器云计算、数据和人工智能核心平台的产品研发,目前公司建立了多个产品系列:基于容器的智能数据云平台TDC、一站式极速,应用在风控措施辅助决策、交易异常行为识别以及套期保值额度审批三个场景中。对应这三个场景,星环科技为该期货交易所分别搭建了三个系统一一风控措施辅助决策、异常交易识别系统以及套期保值审批额度推荐系统。1
数据平台TDH、分布式关系型数据库ArgoDB及KunDB、数据开发工具TDS、智能分析工具Sophon等。解决方案星环科技利用数据科学平台的机器学习及深度学习技术,为该期货交易所搭建了深度神经网络模型了AI模型在业务场景中的应用可解释性。后,通过Sophon模型进行API发布,快速上线并支持更新,从而保证模型的质量,且方便维护。并对接下游应用系统、可视化BI系统、实时监控屏的业务终端,终完成模型科技作为合作伙伴,以解决以上痛点。星环科技成立于2013年,专注于企业级容器云计算、数据和人工智能核心平台的产品研发,目前公司建立了多个产品系列:基于容器的智能数据云平台TDC、一站式极速,应用在风控措施辅助决策、交易异常行为识别以及套期保值额度审批三个场景中。对应这三个场景,星环科技为该期货交易所分别搭建了三个系统一一风控措施辅助决策、异常交易识别系统以及套期保值审批额度推荐系统。1、风控措施辅助决策,措施制定更审慎合理风控措施规则调整属于低频度行为,过往数据较少、历史数据信噪比低。此外,期货交易品种间交易特性也并非完全一样,这对模型的算法能力提出了更高要求。考虑到这一难点,在搭建
来自: 官网 / 案例
可使用多场景模型实验模板,快速构建特定算法应用的解决方案。为什么选择SophonCE社区版?免费:官网免费注册,获取Sophon社区版安装包,零成本快速体验可视化机器学习建模。轻量化、易运维:社区版的(CommunityEdition)企业级一站式数据科学平台社区版,旨在为个人开发爱好者、科研机构以及高校师生提供一款免费、便捷、轻量化的数据智能分析工具及机器学习建模环境,并通过所见即所得的可视化建模能力,拉近从数据接入和分析到数据智能分析应用的距离。SophonCE支持用户通过数据连接获取训练数据集,并应用近200种内置分布式算子建立可视化模型训练流程,对模型效果进行多维度指标评估后,可将模型文件导出到本地。同时,也使用;社区版降低了用户使用数据技术的门槛,做到了易使用、易管理、易运维、更轻量等特点,并且提供全方位技术支持,用户即使只有零经验也可以做到快速上手自主安装、对接、训练和部署。机器学习可视化建模:提供数据分析全流程的拖拽式机器学习建模和推荐式建模服务,帮助用户无需编写代码即可完成机器学习建模,有效地降低了用户使用门槛并对数据智能数据分析迅速上手;可视化建模内置近200种分布式机器学习算子,通过
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...