大模型行业案例
大模型行业案例 更多内容

近日,在2024世界人工智能大会“迈向AGI:大模型焕新与产业赋能”论坛上,《2024大模型典型示范应用案例集》(以下简称《案例集》)重磅发布!星环科技无涯·问知InfinityIntelligence成功入选《案例集》。2024年,我国将人工智能的发展上升为国家战略,大模型的产业化应用落地进一步提速。作为以产业化为导向的重磅前沿研究成果,《案例集》展示了新全的大模型创新融合应用发展成果,推动了大模型为代表的人工智能前沿技术赋能千行百业,推动社会经济高质量发展。无涯·问知是一款基于星环科技自研预训练模型无涯Infinity和向量数据库Hippo、图数据库StellarDB构建的企业级垂直领域理解能力及数据分析能力,可用于市场研究分析、企业供应链分析、法律风险预警、设备故障诊断等丰富的业务场景中。主要产品优势体现在:精准问答能力,减少大模型幻觉基于向量索引技术的信息检索:基于星环自研向量多层次关系,从而进行深度的关联分析,提供了更为深入和准确的洞察结论。确保答案可验证性:无涯·问知的所有回答均提供标注信息来源,确保答案的透明度和可验证性,有效避免大模型幻觉。多模数据来源,提升回答丰富

近日,在2024世界人工智能大会“迈向AGI:大模型焕新与产业赋能”论坛上,《2024大模型典型示范应用案例集》(以下简称《案例集》)重磅发布!星环科技无涯·问知InfinityIntelligence成功入选《案例集》。2024年,我国将人工智能的发展上升为国家战略,大模型的产业化应用落地进一步提速。作为以产业化为导向的重磅前沿研究成果,《案例集》展示了新全的大模型创新融合应用发展成果,推动了大模型为代表的人工智能前沿技术赋能千行百业,推动社会经济高质量发展。无涯·问知是一款基于星环科技自研预训练模型无涯Infinity和向量数据库Hippo、图数据库StellarDB构建的企业级垂直领域理解能力及数据分析能力,可用于市场研究分析、企业供应链分析、法律风险预警、设备故障诊断等丰富的业务场景中。主要产品优势体现在:精准问答能力,减少大模型幻觉基于向量索引技术的信息检索:基于星环自研向量多层次关系,从而进行深度的关联分析,提供了更为深入和准确的洞察结论。确保答案可验证性:无涯·问知的所有回答均提供标注信息来源,确保答案的透明度和可验证性,有效避免大模型幻觉。多模数据来源,提升回答丰富

行业资讯
法律大模型
法律大模型是专门针对法律行业设计的大型预训练人工智能模型,这类模型基于海量的法律文本数据进行训练,包括法律法规、司法案例、专业文献等,旨在理解和处理复杂的法律问题。它们通过微调以提高在处理法律问答、文本生成、案例分析等任务时的专业性和准确性。大模型的应用有助于加速司法决策过程,提高判决的一致性和公正性,并为非专业人士提供易于理解的法律信息。在实际操作中,法律大模型可以辅助进行法规查询、案例分析、合同审查等工作,从而减轻专业人员的工作负担,并促进法治社会的发展。星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

行业资讯
法律大模型
法律大模型是专门针对法律行业设计的大型预训练人工智能模型,这类模型基于海量的法律文本数据进行训练,包括法律法规、司法案例、专业文献等,旨在理解和处理复杂的法律问题。它们通过微调以提高在处理法律问答、文本生成、案例分析等任务时的专业性和准确性。大模型的应用有助于加速司法决策过程,提高判决的一致性和公正性,并为非专业人士提供易于理解的法律信息。在实际操作中,法律大模型可以辅助进行法规查询、案例分析、合同审查等工作,从而减轻专业人员的工作负担,并促进法治社会的发展。星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

行业资讯
法律大模型
法律大模型是专门针对法律行业设计的大型预训练人工智能模型,这类模型基于海量的法律文本数据进行训练,包括法律法规、司法案例、专业文献等,旨在理解和处理复杂的法律问题。它们通过微调以提高在处理法律问答、文本生成、案例分析等任务时的专业性和准确性。大模型的应用有助于加速司法决策过程,提高判决的一致性和公正性,并为非专业人士提供易于理解的法律信息。在实际操作中,法律大模型可以辅助进行法规查询、案例分析、合同审查等工作,从而减轻专业人员的工作负担,并促进法治社会的发展。星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

2023年作为大模型元年,AI行业重新洗牌,各行业应用+大模型的模式纷纷落地,行业主管部门也纷纷牵头大模型语料的组建,聚焦高质量语料的积累、开放共享及安全治理,逐步完善大模型生态构建,确保大模型更好地应用落地。针对垂直类的专家型应用场景,仅用思维链、微调及外挂行业知识库方式是无法满足实际业务需求的,企业至少需要对通用大模型做二次预训练及微调,才能实现一款专家级别的大语言模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

2023年作为大模型元年,AI行业重新洗牌,各行业应用+大模型的模式纷纷落地,行业主管部门也纷纷牵头大模型语料的组建,聚焦高质量语料的积累、开放共享及安全治理,逐步完善大模型生态构建,确保大模型更好地应用落地。针对垂直类的专家型应用场景,仅用思维链、微调及外挂行业知识库方式是无法满足实际业务需求的,企业至少需要对通用大模型做二次预训练及微调,才能实现一款专家级别的大语言模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

2023年作为大模型元年,AI行业重新洗牌,各行业应用+大模型的模式纷纷落地,行业主管部门也纷纷牵头大模型语料的组建,聚焦高质量语料的积累、开放共享及安全治理,逐步完善大模型生态构建,确保大模型更好地应用落地。针对垂直类的专家型应用场景,仅用思维链、微调及外挂行业知识库方式是无法满足实际业务需求的,企业至少需要对通用大模型做二次预训练及微调,才能实现一款专家级别的大语言模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

2023年作为大模型元年,AI行业重新洗牌,各行业应用+大模型的模式纷纷落地,行业主管部门也纷纷牵头大模型语料的组建,聚焦高质量语料的积累、开放共享及安全治理,逐步完善大模型生态构建,确保大模型更好地应用落地。针对垂直类的专家型应用场景,仅用思维链、微调及外挂行业知识库方式是无法满足实际业务需求的,企业至少需要对通用大模型做二次预训练及微调,才能实现一款专家级别的大语言模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。
猜你喜欢
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...