ai大模型基础

行业资讯
大模型AI,什么是大模型AI?
。然而,大模型AI的培训和推理需要大量的计算资源和时间。大模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型大模型AI是指使用大量数据和计算资源来训练高级人工智能(AI)模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。大模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。大模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理大规模数据集,构建复杂的神经网络结构,并进行高效的计算。大模型AI的应用非常广泛应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二
ai大模型基础 更多内容

行业资讯
大模型AI,什么是大模型AI?
。然而,大模型AI的培训和推理需要大量的计算资源和时间。大模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型大模型AI是指使用大量数据和计算资源来训练高级人工智能(AI)模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。大模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。大模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理大规模数据集,构建复杂的神经网络结构,并进行高效的计算。大模型AI的应用非常广泛应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二

行业资讯
大模型AI,什么是大模型AI?
。然而,大模型AI的培训和推理需要大量的计算资源和时间。大模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型大模型AI是指使用大量数据和计算资源来训练高级人工智能(AI)模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。大模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。大模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理大规模数据集,构建复杂的神经网络结构,并进行高效的计算。大模型AI的应用非常广泛应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二

将大模型融入千行百业,让企业的AI应用从早期直接调用通用大模型,发展到建立自己的AI基础设施,打造行业或特定领域、任务的专用大模型,助力生产力革新和产业升级,已经成为目前企业关注的核心。星环科技不断完善AI从基础设施到应用的产业链条,打造从语料处理、模型训练、知识库建设等的一整套的工具链,帮助企业快速建立行业大模型,快速使用AIGC。星环科技拥有从语料到模型再到应用的完整的AIInfra工具集,覆盖语料开发和管理、大模型训练与持续提升、多模态知识工程、多模知识存储与服务、原生AI应用构建编排和应用服务等重要阶段,提供提示词工程、检索增强、智能体构建等大模型应用快速构建和提升、模型推理优化、模型安全和持续提升技术。为企业夯实AI基础设施的同时,星环科技积极携手行业先锋,不断为中国大模型生态发展贡献智慧力量:作为中立的技术提供方加入由上海人工智能实验室联合中央广播电视总台、人民网、国家气象中心、中国科学技术信息研究所、上海报业集团、上海文广集团等10家单位联合发起的中国大模型语料数据联盟,致力于做好数据资源“开发者”;参编国内首个金融行业大模型标准——《面向行业的大规模预训练模型技术和

行业资讯
大模型AI,什么是大模型AI?
。然而,大模型AI的培训和推理需要大量的计算资源和时间。大模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型大模型AI是指使用大量数据和计算资源来训练高级人工智能(AI)模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。大模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。大模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理大规模数据集,构建复杂的神经网络结构,并进行高效的计算。大模型AI的应用非常广泛应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二

行业资讯
大模型AI,什么是大模型AI?
。然而,大模型AI的培训和推理需要大量的计算资源和时间。大模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型大模型AI是指使用大量数据和计算资源来训练高级人工智能(AI)模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。大模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。大模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理大规模数据集,构建复杂的神经网络结构,并进行高效的计算。大模型AI的应用非常广泛应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二

将大模型融入千行百业,让企业的AI应用从早期直接调用通用大模型,发展到建立自己的AI基础设施,打造行业或特定领域、任务的专用大模型,助力生产力革新和产业升级,已经成为目前企业关注的核心。星环科技不断完善AI从基础设施到应用的产业链条,打造从语料处理、模型训练、知识库建设等的一整套的工具链,帮助企业快速建立行业大模型,快速使用AIGC。星环科技拥有从语料到模型再到应用的完整的AIInfra工具集,覆盖语料开发和管理、大模型训练与持续提升、多模态知识工程、多模知识存储与服务、原生AI应用构建编排和应用服务等重要阶段,提供提示词工程、检索增强、智能体构建等大模型应用快速构建和提升、模型推理优化、模型安全和持续提升技术。为企业夯实AI基础设施的同时,星环科技积极携手行业先锋,不断为中国大模型生态发展贡献智慧力量:作为中立的技术提供方加入由上海人工智能实验室联合中央广播电视总台、人民网、国家气象中心、中国科学技术信息研究所、上海报业集团、上海文广集团等10家单位联合发起的中国大模型语料数据联盟,致力于做好数据资源“开发者”;参编国内首个金融行业大模型标准——《面向行业的大规模预训练模型技术和

行业资讯
AI大模型
AI大模型,又称为大规模AI模型、大型神经网络模型,是指参数数量庞大的人工智能模型,通常由数以亿计的参数组成。这些模型通常由深度学习算法训练而成,具有相对较高的准确性和复杂性。随着硬件计算能力的不断提升,以及训练数据集的不断扩大,AI大模型的应用和研究越来越受到关注。AI大模型具有以下几个特点:高度复杂性:AI大模型拥有大量的参数,可以对更加复杂的问题建模和学习。相比于传统的机器学习算法,大模型用户数据。这对于数据隐私和安全提出了挑战,需要合理的数据使用和保护措施。AI大模型在许多领域都有着广泛的应用。例如,在自然语言处理领域,大模型能够实现更加准确和流畅的文本生成、机器翻译和问答系统;在一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的大模型分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出

行业资讯
AI大模型底座
的思考方式;计算能力好比肌肉,提供强大的运算支持;数据资源则是养分,让AI不断学习成长。这三者相互配合,共同构建起AI大模型的坚实基础。在技术特征方面,AI大模型底座展现出三大特点:强大的泛化能力AI大模型底座:智能时代的“数字地基”在人工智能技术快速发展的今天,AI大模型底座正悄然成为支撑智能时代的"数字地基"。这个看似专业的名词,实际上与每个人的生活息息相关。从手机里的语音助手,到街头的智能交通系统,再到医院的AI辅助诊断,背后都离不开AI大模型底座的支撑。AI大模型底座是一个复杂的系统工程,主要由三大核心要素构成:算法框架、计算能力和数据资源。算法框架如同大脑的神经网络,决定着AI、有效的迁移学习能力和持续的自进化能力。泛化能力使AI能够处理各种复杂场景,迁移学习能力让AI可以快速适应新任务,自进化能力则确保AI系统能够与时俱进。这些特性使得AI大模型底座成为推动智能化应用的核心引擎。当前,AI大模型底座已经在多个领域展现其价值。在医疗领域,它帮助医生更快更准确地诊断疾病;在教育领域,它为学生提供个性化的学习方案;在工业生产中,它优化生产流程,提高效率。这些应用不仅提高了社会

行业资讯
AI大模型训练
AI大模型的训练是一个复杂的过程,涉及使用深度学习技术对模型进行大规模的数据训练。以星环科技的无涯为例,作为一个基于大规模语言模型的智能助手,其训练过程通常包括以下几个关键步骤:数据收集:收集大量,并最终部署到实际应用中。AI大模型的训练需要大量的计算资源和专业知识,旨在使模型能够理解和生成高质量的文本内容。星环大语言模型运营平台——SophonLLMOps为了帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。文本数据,这些数据可以来自互联网、书籍、文章等多源渠道,对于政务大模型而言,则侧重于政务相关的文档和资料。数据预处理:清洗和格式化数据,去除噪声和无关信息,确保数据质量。模型构建:设计神经网络架构,用于处理序列数据。训练过程:使用GPU或TPU等高性能计算资源对模型进行迭代训练,调整参数以最小化损失函数。评估与优化:在验证集上评估模型性能,并根据结果进行调优。测试与部署:在测试集上进一步验证模型效果
猜你喜欢
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...