大模型下载平台

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

大模型下载平台 更多内容

邮储银行江苏省分行现有数据下载平台系统共包含超过1200张数据表,内容涵盖储蓄、汇兑、理财、个人信贷及对公业务等邮储银行各项主营业务。近五年来共支持完成十多项主题案例分析以及大量日常(临时与例行)数据提取,为经营管理、业务营销及风险防控等工作提供了强有力的数据信息支持。然而近年来随着省内数据下载平台数据范围的不断扩展以及日常加载数据量的不断积累,一些问题逐渐积累并显现出来,其中以下面几个问题尤为突出:首先是存储空间紧张,目前下载平台共约1200张数据表,占据约12T存储空间,并且以每日增加约10G的速度快速增长。经过多次清理,磁盘使用率仍然接近警戒线,经常需要不定期突击清理,以避免影响源业务状态,导致需要经常向总行申请数据或者在月初时点手动备份数据,严重影响数据信息服务效率。前述三项问题目前较为严重,已经影响到数据下载平台的日常运行维护,并给数据分析团队的日常工作带来了较大压力,是目前地市分行、支行的业务发展。由此背景,希望建成以省分行数据集市为核心,具备数据存储、数据处理、信息加工、信息发布和数据安全管理等功能的企业级数据分析平台。并且以历史数据集中管理平台项目(数据下载系统部分
来自: 官网 / 案例
行业资讯
本地AI模型
支持本地部署AI模型模型下载与运行:用户可以从一些平台下载并运行模型,进行对话测试等。本地AI模型的部署为用户提供了更多的灵活性和控制权,同时也带来了对硬件配置、模型选择、性能测试和持续监控维护的要求。本地AI模型指的是可以在用户自己的硬件设备上部署和运行的人工智能模型,这些模型不需要依赖云端计算资源,可以在本地设备上直接处理数据和执行任务。以下是一些关于本地AI模型的关键点:完全控制:本地避免数据传输到云端可能需要的大量带宽并且耗时的问题,提高处理效率。技术和创新:在本地部署中,用户可以自由地实验新的技术和方法,这对前沿研究和开发特别重要。隐私保护:在本地部署AI模型可以确保敏感数据不离部署允许用户对硬件和软件环境进行完全控制,可以根据需要进行优化和定制,而无需依赖第三方提供商。深度定制:用户可以根据具体需求对模型和系统进行深度定制,不受云服务提供商的限制。可靠性和可用性:本地部署可以开本地环境,减少泄露的风险。降低成本:长期使用本地部署可能比持续支付云服务的使用费用更为经济。低延迟和高性能:本地部署可以提供更低的延迟和更高的性能,特别适合需要实时响应的应用。工具和平台:有一些工具和平台
行业资讯
本地AI模型
支持本地部署AI模型模型下载与运行:用户可以从一些平台下载并运行模型,进行对话测试等。本地AI模型的部署为用户提供了更多的灵活性和控制权,同时也带来了对硬件配置、模型选择、性能测试和持续监控维护的要求。本地AI模型指的是可以在用户自己的硬件设备上部署和运行的人工智能模型,这些模型不需要依赖云端计算资源,可以在本地设备上直接处理数据和执行任务。以下是一些关于本地AI模型的关键点:完全控制:本地避免数据传输到云端可能需要的大量带宽并且耗时的问题,提高处理效率。技术和创新:在本地部署中,用户可以自由地实验新的技术和方法,这对前沿研究和开发特别重要。隐私保护:在本地部署AI模型可以确保敏感数据不离部署允许用户对硬件和软件环境进行完全控制,可以根据需要进行优化和定制,而无需依赖第三方提供商。深度定制:用户可以根据具体需求对模型和系统进行深度定制,不受云服务提供商的限制。可靠性和可用性:本地部署可以开本地环境,减少泄露的风险。降低成本:长期使用本地部署可能比持续支付云服务的使用费用更为经济。低延迟和高性能:本地部署可以提供更低的延迟和更高的性能,特别适合需要实时响应的应用。工具和平台:有一些工具和平台
模型服务平台是一种基于云计算和人工智能技术,为用户提供模型相关服务的平台,支持模型的开发、训练、部署和应用。模型平台功能特点模型训练:提供强大的计算资源和工具,帮助用户使用海量的数据对模型进行训练,使其能够学习到各种知识和模式,以适应不同的任务和应用场景。模型部署:将训练好的模型部署到生产环境中,使其能够为用户提供实际的服务和应用。平台会提供相应的部署工具和技术支持,确保模型的稳定处理用于训练模型的数据。高质量的数据是训练出优秀模型的基础,平台的数据管理功能可以确保数据的质量和可用性。应用开发:提供相应的开发工具和接口,方便用户基于模型开发各种人工智能应用,如自然语言处理应用、计算机视觉应用、语音识别应用等,降低应用开发的难度和门槛,加速人工智能应用的落地和推广。模型平台优势降低技术门槛:模型训练和应用开发需要较高的技术水平和专业知识,而模型服务平台将这些复杂的技术和工具进行了封装和简化,使得普通用户和企业也能够轻松地使用模型技术,无需深入了解其底层原理和技术细节。节省成本:训练模型需要大量的计算资源和数据,成本高昂。通过使用模型服务平台,用户可以按需
行业资讯
模型平台
模型平台是集成了模型技术、数据处理、模型训练、评估与部署等全栈能力的服务平台。可以为企业提供高效、便捷的模型应用解决方案,帮助企业快速构建和部署基于模型的智能应用。模型平台优势与特点高效数据的安全性和隐私保护。持续更新:平台支持模型的持续更新和优化,确保企业能够享受到新的模型技术成果。模型平台应用场景模型平台广泛应用于金融、传媒、文旅、政务、教育等多个行业场景,为这些行业提供定制化的智能解决方案。例如:金融行业:利用模型平台进行风险评估、欺诈检测、智能投顾等应用。传媒行业:通过大模型平台实现内容生成、舆情分析、个性化推荐等功能。文旅行业:利用模型平台提升旅游体验,实现智能导览、个性化旅游规划等应用。政务行业:借助模型平台优化政务服务流程,提高政府决策的科学性和精准性。便捷:提供一站式模型开发工具链和基础设施,降低企业使用模型的门槛和成本。灵活定制:支持根据企业需求进行模型定制和微调,满足不同行业和场景的应用需求。安全可靠:采取高标准的数据安全管理措施,确保企业
行业资讯
模型平台
模型平台是一种为开发、训练、优化和应用规模人工智能模型而设计的综合性平台,以下是具体介绍:功能特性模型训练与优化:提供强大的计算资源和高效的训练算法,支持对规模深度学习模型进行训练,可对模型的监控和评估,及时发现问题并进行调整和优化,还可以对模型的预测结果进行分析和解释。主要类型通用模型平台:具有广泛的知识和强大的语言处理能力,可应用于多种自然语言处理任务和领域,为用户提供通用的智能服务和解决方案。行业大模型平台:针对特定行业的需求和特点进行定制化开发和优化,如金融领域的模型平台、医疗领域的模型平台等,能够更好地满足行业内的专业需求,提供更精准和有效的智能应用。开源模型平台训练好的模型方便地部署到生产环境中,提供多种接口和工具,使开发者能够将模型集成到各种应用程序中,如智能客服、内容生成、智能推荐等。监控与评估:在模型训练和应用过程中,对模型的性能、运行状态等进行实时:开源了大量的预训练模型和相关工具,供全球的开发者和研究人员使用和贡献,促进了模型技术的快速发展和创新,开发者可以在此基础上进行二次开发和定制。应用场景自然语言处理领域:可用于机器翻译、文本摘要、问答
行业资讯
本地AI模型
支持本地部署AI模型模型下载与运行:用户可以从一些平台下载并运行模型,进行对话测试等。本地AI模型的部署为用户提供了更多的灵活性和控制权,同时也带来了对硬件配置、模型选择、性能测试和持续监控维护的要求。本地AI模型指的是可以在用户自己的硬件设备上部署和运行的人工智能模型,这些模型不需要依赖云端计算资源,可以在本地设备上直接处理数据和执行任务。以下是一些关于本地AI模型的关键点:完全控制:本地避免数据传输到云端可能需要的大量带宽并且耗时的问题,提高处理效率。技术和创新:在本地部署中,用户可以自由地实验新的技术和方法,这对前沿研究和开发特别重要。隐私保护:在本地部署AI模型可以确保敏感数据不离部署允许用户对硬件和软件环境进行完全控制,可以根据需要进行优化和定制,而无需依赖第三方提供商。深度定制:用户可以根据具体需求对模型和系统进行深度定制,不受云服务提供商的限制。可靠性和可用性:本地部署可以开本地环境,减少泄露的风险。降低成本:长期使用本地部署可能比持续支付云服务的使用费用更为经济。低延迟和高性能:本地部署可以提供更低的延迟和更高的性能,特别适合需要实时响应的应用。工具和平台:有一些工具和平台
行业资讯
模型平台
模型平台是指基于规模参数的机器学习模型构建的平台,这些平台通常提供模型训练、部署、推理等服务,支持多种应用场景。以下是对模型平台的详细阐述:定义模型平台是基于具有规模参数和复杂计算结构的机器学习模型构建的平台。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型平台的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。特点巨大的规模:模型包含数十亿个参数,模型小可以达到数百GB甚至更大。涌现能力:当模型的训练数据突破一定规模时,模型会涌现出之前小模型所没有的复杂能力和特性。更好的性能和泛化能力:模型通常具有更强大的学习能力和泛化能力,能够在各种任务上表现出色。多任务学习:模型通常会一起学习多种不同的任务,如自然语言处理中的机器翻译、文本摘要、问答系统等。数据训练:模型需要海量的数据来训练,通常在TB以上甚至PB级别的数据集。强大的计算资源:训练模型通常需要数百甚至上千个GPU,以及大量的时间。应用场景自然语言处理:语言模型(LLM)是模型的子分类,专门通过处理大量文本数据来理解和生成人类语言,执行各种自然语言处理任务
行业资讯
模型平台
模型平台是指基于规模参数的机器学习模型构建的平台,这些平台通常提供模型训练、部署、推理等服务,支持多种应用场景。以下是对模型平台的详细阐述:定义模型平台是基于具有规模参数和复杂计算结构的机器学习模型构建的平台。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型平台的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。特点巨大的规模:模型包含数十亿个参数,模型小可以达到数百GB甚至更大。涌现能力:当模型的训练数据突破一定规模时,模型会涌现出之前小模型所没有的复杂能力和特性。更好的性能和泛化能力:模型通常具有更强大的学习能力和泛化能力,能够在各种任务上表现出色。多任务学习:模型通常会一起学习多种不同的任务,如自然语言处理中的机器翻译、文本摘要、问答系统等。数据训练:模型需要海量的数据来训练,通常在TB以上甚至PB级别的数据集。强大的计算资源:训练模型通常需要数百甚至上千个GPU,以及大量的时间。应用场景自然语言处理:语言模型(LLM)是模型的子分类,专门通过处理大量文本数据来理解和生成人类语言,执行各种自然语言处理任务
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。