中文语言llm模型

大型语言模型LLM)是指采用深度学习算法训练巨型自然语言处理模型LLM的特点是能够处理大量的文本数据,从而具有很强的自然语言理解生成能力。LLM可以通过学习大规模语料库中的统计规律和模式,从而实现对自然语言的理解和生成。与传统的基于规则的自然语言处理技术相比,LLM能够更好地应对自然语言的多变性和复杂性,因为它不需要事先编写冗长的规则集来处理语言的各种变体和结构。相反,LLM通过学习大量的语料库,自主地学习自然语言中的各种规律和模式,从而能够更准确地理解和生成自然语言。目前,LLM已经成为自然语言处理领域的关键技术,被广泛应用于机器翻译、本摘要、对话系统、语音识别等领域,不仅能够提高自然语言处理的效率和准确率,还能够为人工智能领域的发展提供强有力的支持。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间

中文语言llm模型 更多内容

大型语言模型(LargeLanguageModel,LLM)是一种通过机器学习技术基于大规模语言文本数据训练而来的模型,大型语言模型LLM可以对自然语言进行处理和生成,如文本的自然语言生成、文本的自然语言理解和翻译等。通常情况下,大型语言模型LLM需要使用大规模的文本数据进行预训练,以提高模型的性能。在预训练完成后,LLM模型可以继续进行微调,以适应特定的任务场景或应用场景。这种预训练和微调的方式使得LLM模型能够在不同领和任务中具备相对较好的适应性和泛化能力。LLM的研究和用领域非常广泛,其中包括情感分析、机器翻译、智能问答、阅读理解和信息检索等。以语言理解为例,LLM模型可以对自然语言进行深入的理解和分析,包括词汇、句法和语义等方面。与传统的自然语言处理方法相比,LLM模型可以自主地从海量的文本数据中学习和提取语言的特征,避免了传统方法中需要人工定义特征的缺陷,也提高了处理效率和准确率。星环大型语言模型LLM相关产品为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和
大型语言模型LLM)是指采用深度学习算法训练巨型自然语言处理模型LLM的特点是能够处理大量的文本数据,从而具有很强的自然语言理解生成能力。LLM可以通过学习大规模语料库中的统计规律和模式,从而实现对自然语言的理解和生成。与传统的基于规则的自然语言处理技术相比,LLM能够更好地应对自然语言的多变性和复杂性,因为它不需要事先编写冗长的规则集来处理语言的各种变体和结构。相反,LLM通过学习大量的语料库,自主地学习自然语言中的各种规律和模式,从而能够更准确地理解和生成自然语言。目前,LLM已经成为自然语言处理领域的关键技术,被广泛应用于机器翻译、本摘要、对话系统、语音识别等领域,不仅能够提高自然语言处理的效率和准确率,还能够为人工智能领域的发展提供强有力的支持。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间
大型语言模型LLM)是指采用深度学习算法训练巨型自然语言处理模型LLM的特点是能够处理大量的文本数据,从而具有很强的自然语言理解生成能力。LLM可以通过学习大规模语料库中的统计规律和模式,从而实现对自然语言的理解和生成。与传统的基于规则的自然语言处理技术相比,LLM能够更好地应对自然语言的多变性和复杂性,因为它不需要事先编写冗长的规则集来处理语言的各种变体和结构。相反,LLM通过学习大量的语料库,自主地学习自然语言中的各种规律和模式,从而能够更准确地理解和生成自然语言。目前,LLM已经成为自然语言处理领域的关键技术,被广泛应用于机器翻译、本摘要、对话系统、语音识别等领域,不仅能够提高自然语言处理的效率和准确率,还能够为人工智能领域的发展提供强有力的支持。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间
大型语言模型LLM)是一种基于深度学习技术的语言处理模型,其目的是理解和生成自然语言文本。LLM主要应用于自然语言处理、语音识别、机器翻译等领域。大型语言模型LLM的核心是神经网络,其基本结构是。大型语言模型LLM的训练需要大量的文本数据。通过对大量文本数据进行预处理,将其转化为模型可以处理的格式。然后,使用反向传播算法和梯度下降等优化方法对模型进行训练,使其能够根据输入的文本生成合理的输出。在训练过程中,需要不断地调整模型的参数,以提高其性能。大型语言模型LLM的应用非常广泛,例如在自然语言处理领域中,LLM可以用于文本分类、情感分析、命名实体识别等任务。在机器翻译领域中,LLM可以用层次化的神经网络,包括输入层、隐藏层和输出层。其中,隐藏层是神经网络的核心部分,用于从输入数据中学习特征表示。在LLM中,隐藏层的数量和每层的神经元数量是非常重要的参数,直接影响模型的性能和表达能力于翻译短文本或生成翻译建议。此外,LLM还可以用于智能客服、智能推荐、语音识别等领域。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具
大型语言模型(LargeLanguageModel,LLM)是一种通过机器学习技术基于大规模语言文本数据训练而来的模型,大型语言模型LLM可以对自然语言进行处理和生成,如文本的自然语言生成、文本的自然语言理解和翻译等。通常情况下,大型语言模型LLM需要使用大规模的文本数据进行预训练,以提高模型的性能。在预训练完成后,LLM模型可以继续进行微调,以适应特定的任务场景或应用场景。这种预训练和微调的方式使得LLM模型能够在不同领和任务中具备相对较好的适应性和泛化能力。LLM的研究和用领域非常广泛,其中包括情感分析、机器翻译、智能问答、阅读理解和信息检索等。以语言理解为例,LLM模型可以对自然语言进行深入的理解和分析,包括词汇、句法和语义等方面。与传统的自然语言处理方法相比,LLM模型可以自主地从海量的文本数据中学习和提取语言的特征,避免了传统方法中需要人工定义特征的缺陷,也提高了处理效率和准确率。星环大型语言模型LLM相关产品为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和
大型语言模型(LargeLanguageModel,LLM)是一种基于深度学习技术的强大的自然语言处理工具。是一种模仿人类言能力的人工智能系统,可以根据输入的上下文生成连贯的、语义合理的文本。大型语言模型(LLM)可以用于各种自然语言处理任务,如文本生成、文本摘要、语言翻译。大型语言模型(LLM)的核心是深度学习技术,特别是自然语言处理领域的神经网络模型。通过大规模训练,LLM可以学习到丰富的语言知识和语言规律,并且可以灵活地运用这些知识和规律进行文本生成。与传统的语言模型相比,LLM具有以下优势:LLM的训练数据非常丰富:它可以在互联网上爬取大量的文本数据,并利用这些数据进行训练。这样统计规律的推断能力使得LLM可以在生成文本的过程中更好地控制语气、风格等。大型语言模型(LLM)是一种强大的自然语言处理工具,具有广泛的应用前景。星环科技大模型训练工具,帮助企业打造自己的专属大模型星就可以获取包括各种专业领域和各种语种的文本数据,使得LLM在不同领域和语种的文本生成任务上都具有更好的表现。LLM利用了深度神经网络的强大表达能力:深度神经网络可以从输入的上下文中提取丰富的义信息,包括
大型语言模型(LargeLanguageModel,LLM)是一种基于深度学习技术的强大的自然语言处理工具。是一种模仿人类言能力的人工智能系统,可以根据输入的上下文生成连贯的、语义合理的文本。大型语言模型(LLM)可以用于各种自然语言处理任务,如文本生成、文本摘要、语言翻译。大型语言模型(LLM)的核心是深度学习技术,特别是自然语言处理领域的神经网络模型。通过大规模训练,LLM可以学习到丰富的语言知识和语言规律,并且可以灵活地运用这些知识和规律进行文本生成。与传统的语言模型相比,LLM具有以下优势:LLM的训练数据非常丰富:它可以在互联网上爬取大量的文本数据,并利用这些数据进行训练。这样统计规律的推断能力使得LLM可以在生成文本的过程中更好地控制语气、风格等。大型语言模型(LLM)是一种强大的自然语言处理工具,具有广泛的应用前景。星环科技大模型训练工具,帮助企业打造自己的专属大模型星就可以获取包括各种专业领域和各种语种的文本数据,使得LLM在不同领域和语种的文本生成任务上都具有更好的表现。LLM利用了深度神经网络的强大表达能力:深度神经网络可以从输入的上下文中提取丰富的义信息,包括
大型语言模型(LargeLanguageModel,LLM)是一种基于深度学习技术的强大的自然语言处理工具。是一种模仿人类言能力的人工智能系统,可以根据输入的上下文生成连贯的、语义合理的文本。大型语言模型(LLM)可以用于各种自然语言处理任务,如文本生成、文本摘要、语言翻译。大型语言模型(LLM)的核心是深度学习技术,特别是自然语言处理领域的神经网络模型。通过大规模训练,LLM可以学习到丰富的语言知识和语言规律,并且可以灵活地运用这些知识和规律进行文本生成。与传统的语言模型相比,LLM具有以下优势:LLM的训练数据非常丰富:它可以在互联网上爬取大量的文本数据,并利用这些数据进行训练。这样统计规律的推断能力使得LLM可以在生成文本的过程中更好地控制语气、风格等。大型语言模型(LLM)是一种强大的自然语言处理工具,具有广泛的应用前景。星环科技大模型训练工具,帮助企业打造自己的专属大模型星就可以获取包括各种专业领域和各种语种的文本数据,使得LLM在不同领域和语种的文本生成任务上都具有更好的表现。LLM利用了深度神经网络的强大表达能力:深度神经网络可以从输入的上下文中提取丰富的义信息,包括
大型语言模型(LargeLanguageModel,LLM)是一种基于深度学习技术的强大的自然语言处理工具。是一种模仿人类言能力的人工智能系统,可以根据输入的上下文生成连贯的、语义合理的文本。大型语言模型(LLM)可以用于各种自然语言处理任务,如文本生成、文本摘要、语言翻译。大型语言模型(LLM)的核心是深度学习技术,特别是自然语言处理领域的神经网络模型。通过大规模训练,LLM可以学习到丰富的语言知识和语言规律,并且可以灵活地运用这些知识和规律进行文本生成。与传统的语言模型相比,LLM具有以下优势:LLM的训练数据非常丰富:它可以在互联网上爬取大量的文本数据,并利用这些数据进行训练。这样统计规律的推断能力使得LLM可以在生成文本的过程中更好地控制语气、风格等。大型语言模型(LLM)是一种强大的自然语言处理工具,具有广泛的应用前景。星环科技大模型训练工具,帮助企业打造自己的专属大模型星就可以获取包括各种专业领域和各种语种的文本数据,使得LLM在不同领域和语种的文本生成任务上都具有更好的表现。LLM利用了深度神经网络的强大表达能力:深度神经网络可以从输入的上下文中提取丰富的义信息,包括
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...