如何自己微调大模型
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。
如何自己微调大模型 更多内容

行业资讯
大模型如何微调?
大模型的微调是一个关键步骤,用于将预训练模型适应于特定任务或领域。这一过程通常涉及以下步骤:准备阶段选择合适的预训练模型:需综合考量模型的架构、参数量以及与目标任务的适配性等因素。准备训练数据集模型参数更新,包括只更新一部分参数或通过对参数进行结构化约束,如稀疏化或低秩近似来降低微调的参数数量。提示微调、指令微调、有监督微调:指令微调是通过在由(指令,输出)对组成的数据集上进一步训练大语言加速训练过程。微调实施阶段数据集划分:通常将数据集按照一定比例划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于在训练过程中调整模型的参数和评估模型的性能,测试集则用于最终评估模型的泛化能力。设定微调目标与参数调整:明确微调的具体目标,如提高模型在某一特定任务上的准确率、召回率等。同时,确定要调整的参数,包括学习率、优化器、正则化参数等。执行微调:在训练循环中依次进行前向传播、计算损失数据增强技术增加数据的多样性,提升模型的鲁棒性。常见的微调技术全参数微调和高效参数微调:全参数微调是使用预训练模型作为初始化权重,在特定数据集上继续训练,更新全部参数。高效参数微调则期望用更少的资源完成

行业资讯
大模型如何微调?
大模型的微调是一个关键步骤,用于将预训练模型适应于特定任务或领域。这一过程通常涉及以下步骤:准备阶段选择合适的预训练模型:需综合考量模型的架构、参数量以及与目标任务的适配性等因素。准备训练数据集模型参数更新,包括只更新一部分参数或通过对参数进行结构化约束,如稀疏化或低秩近似来降低微调的参数数量。提示微调、指令微调、有监督微调:指令微调是通过在由(指令,输出)对组成的数据集上进一步训练大语言加速训练过程。微调实施阶段数据集划分:通常将数据集按照一定比例划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于在训练过程中调整模型的参数和评估模型的性能,测试集则用于最终评估模型的泛化能力。设定微调目标与参数调整:明确微调的具体目标,如提高模型在某一特定任务上的准确率、召回率等。同时,确定要调整的参数,包括学习率、优化器、正则化参数等。执行微调:在训练循环中依次进行前向传播、计算损失数据增强技术增加数据的多样性,提升模型的鲁棒性。常见的微调技术全参数微调和高效参数微调:全参数微调是使用预训练模型作为初始化权重,在特定数据集上继续训练,更新全部参数。高效参数微调则期望用更少的资源完成

行业资讯
企业如何选择适合的大模型?
随着人工智能的不断发展,大模型的应用逐渐渗透到各个行业。那么,如何选择适合企业的大模型?考虑大模的类型:目前,大模型主要分为两类:通用型和定制型。通用型大模型适用于各种应用场景,但在性能上可能等方面,领域能力则是指在某个特定领域内的表现。企业在选择大模型时需要根据自身需求考虑这两方面的能力,以确保大模型能够符合自身的业务需求。提示工程和微调:提示工程是指为大模型提供足够的数据量进行训练,确保其准确性和鲁棒性。而微调则是指根据需求进行适当的调整,以满足特定应用场景的需求。企业在选择大模型时需要考虑这两个因素,以确保大模型能够在实际应用中表现出佳的效果。大模型生态:大模型生态包括大模型的社区支持、开发者文档、模型更新周期等方面。企业在选择大模型时需要考虑这些因素,以便在使用时能够得到充分的支持和帮助。对于企业来说,选择适合的大模型要综合考虑大模型的类型、基础和领域能力、提示工程、微调以及大模型生态等多方面的因素,从而选择合适的大模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过

行业资讯
企业如何选择适合的大模型?
随着人工智能的不断发展,大模型的应用逐渐渗透到各个行业。那么,如何选择适合企业的大模型?考虑大模的类型:目前,大模型主要分为两类:通用型和定制型。通用型大模型适用于各种应用场景,但在性能上可能等方面,领域能力则是指在某个特定领域内的表现。企业在选择大模型时需要根据自身需求考虑这两方面的能力,以确保大模型能够符合自身的业务需求。提示工程和微调:提示工程是指为大模型提供足够的数据量进行训练,确保其准确性和鲁棒性。而微调则是指根据需求进行适当的调整,以满足特定应用场景的需求。企业在选择大模型时需要考虑这两个因素,以确保大模型能够在实际应用中表现出佳的效果。大模型生态:大模型生态包括大模型的社区支持、开发者文档、模型更新周期等方面。企业在选择大模型时需要考虑这些因素,以便在使用时能够得到充分的支持和帮助。对于企业来说,选择适合的大模型要综合考虑大模型的类型、基础和领域能力、提示工程、微调以及大模型生态等多方面的因素,从而选择合适的大模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过

行业资讯
大模型微调
大模型微调是指在预训练好的大模型基础上,使用特定领域的数据进行进一步训练,以适应特定任务或场景的过程。这种微调可以优化模型在特定任务上的表现,使其更加精准和专业。微调的作用在于调整模型的参数,使其专业术语。两者都可以看作是大模型个性化和专业化的过程。在星环科技的大模型中,如果用户希望在金融分析领域使用该模型,可以通过提供金融相关的文本数据进行微调,使模型更好地理解和生成金融相关的报告或分析。星环。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。更好地理解并处理特定领域的知识和语言模式。指令微调与使用特定领域数据进行的微调有联系也有区别。指令微调更多关注于调整模型对特定指令的理解和执行能力,而领域数据微调则侧重于让模型适应某一领域的语言风格和大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代

行业资讯
大模型高效微调
大模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使大模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对大模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使

行业资讯
大模型高效微调
大模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使大模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对大模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使

行业资讯
大模型微调
大模型微调是指在预训练好的大模型基础上,使用特定领域的数据进行进一步训练,以适应特定任务或场景的过程。这种微调可以优化模型在特定任务上的表现,使其更加精准和专业。微调的作用在于调整模型的参数,使其专业术语。两者都可以看作是大模型个性化和专业化的过程。在星环科技的大模型中,如果用户希望在金融分析领域使用该模型,可以通过提供金融相关的文本数据进行微调,使模型更好地理解和生成金融相关的报告或分析。星环。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。更好地理解并处理特定领域的知识和语言模式。指令微调与使用特定领域数据进行的微调有联系也有区别。指令微调更多关注于调整模型对特定指令的理解和执行能力,而领域数据微调则侧重于让模型适应某一领域的语言风格和大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代

行业资讯
大模型微调
大模型微调是指在预训练好的大模型基础上,使用特定领域的数据进行进一步训练,以适应特定任务或场景的过程。这种微调可以优化模型在特定任务上的表现,使其更加精准和专业。微调的作用在于调整模型的参数,使其专业术语。两者都可以看作是大模型个性化和专业化的过程。在星环科技的大模型中,如果用户希望在金融分析领域使用该模型,可以通过提供金融相关的文本数据进行微调,使模型更好地理解和生成金融相关的报告或分析。星环。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。更好地理解并处理特定领域的知识和语言模式。指令微调与使用特定领域数据进行的微调有联系也有区别。指令微调更多关注于调整模型对特定指令的理解和执行能力,而领域数据微调则侧重于让模型适应某一领域的语言风格和大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代
猜你喜欢
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。