如何搭建大模型开发平台

星环模型运营平台
星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

如何搭建大模型开发平台 更多内容

模型开发平台是一种为开发规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速模型的研发和应用落地。以下从其功能特点、技术架构、应用:集成了各种深度学习框架和算法库,为模型开发提供基础的算法支持。平台服务层:提供数据管理、模型训练、模型评估、模型部署等核心服务,以及用户管理、任务调度、日志监控等辅助服务。应用层:面向用户的应用界面最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于评估结果,提供模型优化工具,如模型压缩、量化、剪枝等技术,减少模型的存储空间和计算量,提高模型的运行效率和部署灵活性。模型部署功能多平台支持:支持将训练好的模型部署到多种平台上,包括云平台、本地服务器,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉
模型应用开发平台是基于人工智能和数据技术的应用程序开发平台,可以帮助开发人员快速构建和部署高质量的模型应用。模型应用开发平台通常提供一系列工具和框架,使用户能够轻松处理规模的数据,并构建和训练复杂的深度学习模型。为开发人员提供了一个集成环境,可以大大简化模型的构建和训练过程。模型应用开发平台提供各种应用工具和接口,使开发人员可以方便地构建、训练和部署模型应用,从而大加快了开发流程。提供可视化界面,帮助用户轻松构建模型,提供了预训练模型库,用户可以根据需要轻松引用,节省大量时间和精力。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代自身业务特点的领域语言模型。在模型训练微调阶段,SophonLLMOps工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索
模型应用开发平台是指那些专门设计用于构建、训练和部署大型深度学习模型的软件平台。这些平台提供了一系列的工具和服务,使得开发者能够更高效地开发和部署模型应用。规模数据处理能力:模型应用开发平台能够处理和训练规模数据集,这些模型通常参数量巨大,通过预训练和自监督学习等技术进行训练,能够处理复杂的任务并提升性能。多样化的应用场景:平台支持多种应用场景,如自然语言处理(包括机器翻译、语言理解。可视化的Prompt编排:平台提供可视化工具,帮助开发者编排和管理Prompt,以提高模型的响应质量和准确性。应用运营工具:提供应用运营工具,帮助开发者监控应用性能,收集用户反馈,并进行必要的调整和优化。支持多种大型语言模型平台支持多种大型语言模型,并与多个模型供应商合作,确保开发者能根据需求选择最适合的模型。性能调优与服务部署:平台提供性能调优工具,帮助开发者诊断分析和调试应用流,同时支持一键部署至生产环境,实现高效运营。、聊天机器人等)、视频配音、语音播报、标题生成等。简化的开发流程:平台提供低代码/无代码开发环境,允许开发者通过可视化的方式轻松定义Prompt、上下文和插件等,无需深入底层技术细节。模块化设计:采用
数据平台的建设越来越受到企业的关注。如何搭建数据平台?需求分析:在搭建数据平台之前,企业需要对自身的需求全面剖析,比如数据量、类型、来源、处理方式、应用场景、用户数量、性能要求等方面发现和应用,就会大大减少数据的实际意义。因此,数据平台中还需要数据可视化和应用开发,基于数据可视化和应用的开发,企业可以从海量数据中挖掘出更多有效的信息,使数据的价值得到充分体现。星环数据基础平台-TranswarpDataHub星环数据基础平台(TDH)是星环自主研发的一站式多模型数据基础平台,包括多个大数据存储与分析产品,能够存储PB级别的海量数据,可以处理包括关系表、文本、时空数据平台是为存储、管理和处理规模数据而设计的数据系统。数据平台能把来自不同渠道的海量数据整合在一个平台上,并提供多种数据处理工具和技术,以帮助企业分析和挖掘数据。数据平台的主要功能包括数据采集、清洗、存储、加工、分析和可视化。企业可以利用数据平台进行更深入的数据分析,发现和解决问题,并更好地理解他们的业务表现和客户需求,进一步优化业务决策。为了应对企业海量数据存储、分析和处理的需求
解锁模型开发管理平台:AI时代的“魔法工坊”模型开发管理平台介绍概念:模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行模型开发、训练、优化、部署以及后续的管理维护工作。它运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在不同工具和平台间切换的时间,自动化的流程和丰富的模板,进一步缩短开发周期。保障模型质量:完善的模型评估和优化机制,以及对算力资源的合理调配,有助于训练出高性能、高稳定性的模型。应用场景智能客服:利用开发个性化推荐模型,为用户精准推荐产品和服务,如电商平台的商品推荐、内容平台的文章视频推荐等。内容创作辅助:辅助创作新闻稿、营销文案、视频脚本等内容。例如,输入创作主题和相关要求,平台基于模型生成整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源模型开发者无需从头构建模型,可选择合适的预训练模型进行
行业资讯
搭建模型
目标任务和应用场景,分析所需的性能指标和资源需求。硬件选择:选择合适的硬件平台,以提供足够的计算能力。考虑分布式训练的可能性以扩展计算资源。框架搭建:选择一个适合模型训练的深度学习框架,以及分布式搭建一个模型(LargeLanguageModel,LLM)是一个复杂的过程,涉及到硬件选择、框架搭建、数据准备、模型训练、评估和部署等多个步骤。以下是搭建模型的一般流程:需求分析:确定模型的训练框架等。数据准备:收集和处理大量的训练数据。这可能包括数据清洗、预处理、分词、构建词汇表等步骤。模型设计:设计模型架构,选择合适的模型类型,并确定模型的规模,包括层数和隐藏单元数。预训练:使用大量无标签数据进行预训练,以学习语言的通用表示。常见的预训练任务包括语言模型预训练、掩码语言模型(MLM)和下一句预测(NSP)。微调:在特定任务的数据集上对预训练模型进行微调,以适应特定的应用场景。模型评估:使用验证集评估模型的性能,调整超参数以优化模型模型优化:应用模型压缩和加速技术,如量化、剪枝、知识蒸馏等,以提高模型的推理效率。部署:将训练好的模型部署到生产环境中,可能涉及到模型转换、服务封装等步骤。监控与维护:在模型部署后,持续监控模型性能,定期更新模型以适应新的数据和场景。
数据平台搭建系统在当今信息爆炸的时代,数据已成为驱动社会发展的新石油。如何高效地收集、存储、处理和分析海量数据,成为各行各业面临的共同挑战。数据平台搭建系统应运而生,为企业提供了处理庞大数据集的模型数据平台搭建系统正在不断演进,以适应日新月异的技术环境和业务需求。对于组织而言,构建适合自身特点的数据平台,将是数字化转型过程中提升竞争力的关键一步。理解这些平台的基本原理和技术特点,有助于做出更明智的技术选型和架构决策。技术框架和解决方案。数据平台的基本架构一个完整的数据平台通常由多个层次组成,每层承担不同的功能。底层是数据采集层,负责从各种来源获取数据,包括传感器、社交媒体、交易记录等。这一层需要解决数据的层通过并行计算框架,将规模计算任务分解到多个计算节点上执行,显著提高了处理效率。关键技术组件分布式计算框架是数据平台的基石。这种框架能够将计算任务自动分配到集群中的多台机器上并行执行,并在任务失败时和当前负载情况动态调整资源分配。数据查询和分析工具为用户提供了访问和处理数据的接口。这些工具支持标准化的查询语言,有些还提供了机器学习算法的集成,使得数据分析师和数据科学家能够直接在平台开发和部署
搭建公司级数据平台在当今数据驱动的商业环境中,企业如何高效地收集、存储、处理和分析海量数据已成为决定竞争力的关键因素。公司级数据平台搭建不仅是一项技术工程,更是企业数字化转型的核心基础设施数据处理任务。上层是数据应用层,涵盖数据分析、机器学习、可视化等具体业务场景的应用工具。平台搭建的关键步骤搭建数据平台的开始是需求分析。企业需要明确平台要解决哪些业务问题,预期的数据规模有多大,对实时。本文将介绍构建这样一个平台的基本思路和关键环节。数据平台的基本架构一个完整的数据平台通常由四个核心层次组成。底层是基础设施层,包括计算资源、存储资源和网络资源,可以采用物理服务器或云服务的方式部署流程,设计合理的模块划分和接口规范。部署实施阶段需要注意资源分配、参数调优和安全配置。还有持续运维环节,包括监控系统健康状态、定期性能优化和容量规划。企业级数据平台的建设是一项复杂的系统工程,需要平衡性要求如何,以及未来可能的扩展方向。接下来是技术选型阶段,需要根据需求选择合适的技术组件,考虑因素包括社区活跃度、学习曲线、与现有系统的兼容性等。然后进入架构设计环节,要规划好数据从接入到应用的完整
如何从0到1搭建数据平台在当今数据驱动的时代,构建一个有效可靠的数据平台已成为许多企业和组织的核心需求。从零开始搭建数据平台看似复杂,但只要遵循科学的方法和步骤,就能逐步实现目标。本文将为您介绍搭建数据平台的基本流程和关键考量。明确需求与规划架构搭建数据平台的开始是明确业务需求和技术目标。需要思考平台将处理哪些类型的数据,数据量预计有多大,需要支持哪些分析场景。是侧重于实时,帮助运维人员快速定位和解决问题。持续优化与迭代演进数据平台搭建不是一蹴而就的过程,而需要持续优化和迭代。随着业务发展和技术进步,平台架构可能需要调整,组件可能需要升级或替换。定期评估平台性能,识别瓶颈并进行优化,是保持平台竞争力的必要工作。从零开始搭建数据平台是一项系统工程,需要综合考虑技术、人员和流程多个方面。通过合理的规划和分阶段实施,即使是资源有限的团队,也能构建出满足业务需求的数据平台。适合的平台不一定是技术很先进的,而是能平衡业务需求、技术复杂度和维护成本的解决方案。数据处理,还是批量分析为主?这些问题的答案将直接影响后续技术选型。在需求明确后,需要设计平台的整体架构。典型的数据平台通常包含数据采集层、存储层、计算层和应用层。数据采集层负责从各种数据源收集数据;存储层提供
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...