北京向量数据库公司
Transwarp Hippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量式数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题。Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性检索等场景。
北京向量数据库公司 更多内容

行业资讯
向量数据库公司
星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备弹性扩缩容星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储与直接利用各类算法lib不同,星环Hippo存储和计算都可以充分利用分布式特性,按需灵活扩展,满足大规模集群部署需求;通过Raft算法确保数据的强一致性;并提供故障迁移,数据修复等数据保障能力。深度优化,高性能数据检索星环分布式向量数据库Hippo支持多进程架构与GPU加速,充分发挥并行检索能力;支持基于检索速度和内存使用的特定优化,以及寄存器级算法优化;同时提供多类索引支持,满足不同需求不同体量的业务场景。动态更新,实时检索星环分布式向量数据库

行业资讯
向量数据库公司
星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备弹性扩缩容星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储与直接利用各类算法lib不同,星环Hippo存储和计算都可以充分利用分布式特性,按需灵活扩展,满足大规模集群部署需求;通过Raft算法确保数据的强一致性;并提供故障迁移,数据修复等数据保障能力。深度优化,高性能数据检索星环分布式向量数据库Hippo支持多进程架构与GPU加速,充分发挥并行检索能力;支持基于检索速度和内存使用的特定优化,以及寄存器级算法优化;同时提供多类索引支持,满足不同需求不同体量的业务场景。动态更新,实时检索星环分布式向量数据库

行业资讯
向量数据库公司
星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备弹性扩缩容星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储与直接利用各类算法lib不同,星环Hippo存储和计算都可以充分利用分布式特性,按需灵活扩展,满足大规模集群部署需求;通过Raft算法确保数据的强一致性;并提供故障迁移,数据修复等数据保障能力。深度优化,高性能数据检索星环分布式向量数据库Hippo支持多进程架构与GPU加速,充分发挥并行检索能力;支持基于检索速度和内存使用的特定优化,以及寄存器级算法优化;同时提供多类索引支持,满足不同需求不同体量的业务场景。动态更新,实时检索星环分布式向量数据库

行业资讯
向量数据库公司
星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备弹性扩缩容星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储与直接利用各类算法lib不同,星环Hippo存储和计算都可以充分利用分布式特性,按需灵活扩展,满足大规模集群部署需求;通过Raft算法确保数据的强一致性;并提供故障迁移,数据修复等数据保障能力。深度优化,高性能数据检索星环分布式向量数据库Hippo支持多进程架构与GPU加速,充分发挥并行检索能力;支持基于检索速度和内存使用的特定优化,以及寄存器级算法优化;同时提供多类索引支持,满足不同需求不同体量的业务场景。动态更新,实时检索星环分布式向量数据库

行业资讯
向量数据库公司
星环科技分布式向量数据库TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。与开源的向量数据库不同,星环分布式向量数据库Hippo具备弹性扩缩容星环分布式向量数据库Hippo采用全面容器化部署,支持服务的弹性扩缩容,同时具备多租户和强大的资源管控能力。高扩展性,海量向量数据存储与直接利用各类算法lib不同,星环Hippo存储和计算都可以充分利用分布式特性,按需灵活扩展,满足大规模集群部署需求;通过Raft算法确保数据的强一致性;并提供故障迁移,数据修复等数据保障能力。深度优化,高性能数据检索星环分布式向量数据库Hippo支持多进程架构与GPU加速,充分发挥并行检索能力;支持基于检索速度和内存使用的特定优化,以及寄存器级算法优化;同时提供多类索引支持,满足不同需求不同体量的业务场景。动态更新,实时检索星环分布式向量数据库

行业资讯
向量数据库之向量存储
向量数据库是专门用于高效地存储、查询和管理向量数据的数据库。而向量存储,作为向量数据库的核心组成部分,其设计和优化直接影响到数据库的性能和效率。数据结构向量数据库在存储向量数据时,通常会采用特定的具有固定维度的向量集合。这些平面数据结构简单直观,但在处理大规模数据集时,可能会面临性能瓶颈。特定向量存储引擎:为了克服平面数据结构的局限性,一些向量数据库采用了特定的向量存储引擎。这些引擎针对向量和提高存储效率,一些向量数据库采用了压缩技术。压缩算法:这些算法通过消除数据中的冗余和重复信息,来减少向量数据的大小。常见的压缩算法包括有损压缩和无损压缩。有损压缩在压缩过程中会损失一定的精度,但通常可以获得更高的压缩比;而无损压缩则能够在保持数据完整性的前提下进行压缩。大规模数据集优化:在处理大规模数据集时,压缩技术显得尤为重要。通过合理地应用压缩算法,向量数据库可以显著减少存储空间的使用,降低存储成本。同时,压缩后的数据还可以提高数据传输和处理的效率,进一步提升整个系统的性能。数据结构。这些数据结构能够有效地组织和存储向量,以便于后续的查询和计算。平面数据结构:常见的平面数据结构包括数组和矩阵。数组是一种线性结构,适用于存储一系列有序的向量;而矩阵则是一种二维结构,适用于存储

行业资讯
向量数据库之向量存储
向量数据库是专门用于高效地存储、查询和管理向量数据的数据库。而向量存储,作为向量数据库的核心组成部分,其设计和优化直接影响到数据库的性能和效率。数据结构向量数据库在存储向量数据时,通常会采用特定的具有固定维度的向量集合。这些平面数据结构简单直观,但在处理大规模数据集时,可能会面临性能瓶颈。特定向量存储引擎:为了克服平面数据结构的局限性,一些向量数据库采用了特定的向量存储引擎。这些引擎针对向量和提高存储效率,一些向量数据库采用了压缩技术。压缩算法:这些算法通过消除数据中的冗余和重复信息,来减少向量数据的大小。常见的压缩算法包括有损压缩和无损压缩。有损压缩在压缩过程中会损失一定的精度,但通常可以获得更高的压缩比;而无损压缩则能够在保持数据完整性的前提下进行压缩。大规模数据集优化:在处理大规模数据集时,压缩技术显得尤为重要。通过合理地应用压缩算法,向量数据库可以显著减少存储空间的使用,降低存储成本。同时,压缩后的数据还可以提高数据传输和处理的效率,进一步提升整个系统的性能。数据结构。这些数据结构能够有效地组织和存储向量,以便于后续的查询和计算。平面数据结构:常见的平面数据结构包括数组和矩阵。数组是一种线性结构,适用于存储一系列有序的向量;而矩阵则是一种二维结构,适用于存储

行业资讯
向量数据库之向量存储
向量数据库是专门用于高效地存储、查询和管理向量数据的数据库。而向量存储,作为向量数据库的核心组成部分,其设计和优化直接影响到数据库的性能和效率。数据结构向量数据库在存储向量数据时,通常会采用特定的具有固定维度的向量集合。这些平面数据结构简单直观,但在处理大规模数据集时,可能会面临性能瓶颈。特定向量存储引擎:为了克服平面数据结构的局限性,一些向量数据库采用了特定的向量存储引擎。这些引擎针对向量和提高存储效率,一些向量数据库采用了压缩技术。压缩算法:这些算法通过消除数据中的冗余和重复信息,来减少向量数据的大小。常见的压缩算法包括有损压缩和无损压缩。有损压缩在压缩过程中会损失一定的精度,但通常可以获得更高的压缩比;而无损压缩则能够在保持数据完整性的前提下进行压缩。大规模数据集优化:在处理大规模数据集时,压缩技术显得尤为重要。通过合理地应用压缩算法,向量数据库可以显著减少存储空间的使用,降低存储成本。同时,压缩后的数据还可以提高数据传输和处理的效率,进一步提升整个系统的性能。数据结构。这些数据结构能够有效地组织和存储向量,以便于后续的查询和计算。平面数据结构:常见的平面数据结构包括数组和矩阵。数组是一种线性结构,适用于存储一系列有序的向量;而矩阵则是一种二维结构,适用于存储

行业资讯
国内向量数据库厂商
明显。公司早在2018年便为公司内部AI团队研发向量数据库使用,凭借十年深耕于大数据市场所积累的行业经验,公司富有前瞻性地预见到向量数据库未来在AI时代下的应用潜力,不断地积累向量数据库的相关技术与向量数据库不仅可以解决LLM众多问题,包括时间局限性,实时性难题和缺乏私域数据;空间局限性,输入限制导致上下文信息丢失;应用痛点,“幻觉”和低准确率问题;多模态数据处理难题等。因此,向量数据库在图像专利,终产品技术迭代五年后于2023年5月份正式发布Hippo。星环的分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。星环科技具备多年的数据库技术和AI技术积累,以及向量数据库技术方面的实践,在产品可用性和稳定性等方面表现优秀。从产品层面来看,被业界看好的开源软件并未占据优势,数据库作为新兴中间件已经初步呈现高度定制化需求,易用性和定制化服务两大要素削弱了开源插件
猜你喜欢
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...